Improved Synthesis and Analysis Results on Synchronization of T-S Fuzzy Neural Network Systems

Wenqiang Ji, Qifu Qu, Junhua Gu, Meng Wang, Yiwei Zhao
{"title":"Improved Synthesis and Analysis Results on Synchronization of T-S Fuzzy Neural Network Systems","authors":"Wenqiang Ji, Qifu Qu, Junhua Gu, Meng Wang, Yiwei Zhao","doi":"10.1109/ICIST52614.2021.9440602","DOIUrl":null,"url":null,"abstract":"This paper studies the synchronization problem for nonlinear neural network systems (NNSs) via T-S fuzzy models. Under a convex optimization framework, an improved asymptotic stability condition is obtained to ensure the synchronization of the fuzzy drive NNS with the response NNS. By introducing several auxiliary matrix multipliers, increased freedom are involved and the conservativeness can be further reduced. Simulation studies are given to show the effectiveness of the proposed method.","PeriodicalId":371599,"journal":{"name":"2021 11th International Conference on Information Science and Technology (ICIST)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 11th International Conference on Information Science and Technology (ICIST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIST52614.2021.9440602","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper studies the synchronization problem for nonlinear neural network systems (NNSs) via T-S fuzzy models. Under a convex optimization framework, an improved asymptotic stability condition is obtained to ensure the synchronization of the fuzzy drive NNS with the response NNS. By introducing several auxiliary matrix multipliers, increased freedom are involved and the conservativeness can be further reduced. Simulation studies are given to show the effectiveness of the proposed method.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
T-S模糊神经网络系统同步的改进综合与分析结果
本文利用T-S模糊模型研究了非线性神经网络系统的同步问题。在一个凸优化框架下,得到了一个改进的渐近稳定性条件,以保证模糊驱动神经网络与响应神经网络的同步。通过引入几个辅助矩阵乘法器,增加了自由度,进一步降低了保守性。仿真研究表明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Top-k Graph Similarity Search Based on Hierarchical Inverted Index Disturbance observer based on NTSM output tracking control for second-order systems with power integrators and input quantization Alzheimer’s disease diagnosis method based on convolutional neural network using key slices voting Distributed Constrained Online Optimization with Noisy Communication Molecular Diagnosis: And using Ubiquitous Transcription Factor and MAPK to Recover Thyroid Cells of Hyperthyroidism and Heart
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1