Dataset-driven research for improving recommender systems for learning

K. Verbert, H. Drachsler, N. Manouselis, M. Wolpers, Riina Vuorikari, E. Duval
{"title":"Dataset-driven research for improving recommender systems for learning","authors":"K. Verbert, H. Drachsler, N. Manouselis, M. Wolpers, Riina Vuorikari, E. Duval","doi":"10.1145/2090116.2090122","DOIUrl":null,"url":null,"abstract":"In the world of recommender systems, it is a common practice to use public available datasets from different application environments (e.g. MovieLens, Book-Crossing, or Each-Movie) in order to evaluate recommendation algorithms. These datasets are used as benchmarks to develop new recommendation algorithms and to compare them to other algorithms in given settings. In this paper, we explore datasets that capture learner interactions with tools and resources. We use the datasets to evaluate and compare the performance of different recommendation algorithms for learning. We present an experimental comparison of the accuracy of several collaborative filtering algorithms applied to these TEL datasets and elaborate on implicit relevance data, such as downloads and tags, that can be used to improve the performance of recommendation algorithms.","PeriodicalId":150927,"journal":{"name":"Proceedings of the 1st International Conference on Learning Analytics and Knowledge","volume":"110 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"190","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 1st International Conference on Learning Analytics and Knowledge","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2090116.2090122","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 190

Abstract

In the world of recommender systems, it is a common practice to use public available datasets from different application environments (e.g. MovieLens, Book-Crossing, or Each-Movie) in order to evaluate recommendation algorithms. These datasets are used as benchmarks to develop new recommendation algorithms and to compare them to other algorithms in given settings. In this paper, we explore datasets that capture learner interactions with tools and resources. We use the datasets to evaluate and compare the performance of different recommendation algorithms for learning. We present an experimental comparison of the accuracy of several collaborative filtering algorithms applied to these TEL datasets and elaborate on implicit relevance data, such as downloads and tags, that can be used to improve the performance of recommendation algorithms.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
改进学习推荐系统的数据集驱动研究
在推荐系统的世界里,使用来自不同应用环境(例如MovieLens、Book-Crossing或Each-Movie)的公共可用数据集来评估推荐算法是一种常见的做法。这些数据集被用作开发新推荐算法的基准,并将它们与给定设置下的其他算法进行比较。在本文中,我们探索了捕获学习者与工具和资源交互的数据集。我们使用这些数据集来评估和比较不同的学习推荐算法的性能。我们对应用于这些TEL数据集的几种协同过滤算法的准确性进行了实验比较,并详细说明了可用于提高推荐算法性能的隐式相关数据,如下载和标签。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
SNAPP: a bird's-eye view of temporal participant interaction iSpot analysed: participatory learning and reputation Variable construction for predictive and causal modeling of online education data The value of learning analytics to networked learning on a personal learning environment Learning networks, crowds and communities
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1