Packet-based Network Traffic Classification Using Deep Learning

Hyun-kyo Lim, Ju-Bong Kim, Joo-Seong Heo, Kwihoon Kim, Yong-Geun Hong, Youn-Hee Han
{"title":"Packet-based Network Traffic Classification Using Deep Learning","authors":"Hyun-kyo Lim, Ju-Bong Kim, Joo-Seong Heo, Kwihoon Kim, Yong-Geun Hong, Youn-Hee Han","doi":"10.1109/ICAIIC.2019.8669045","DOIUrl":null,"url":null,"abstract":"Recently, the advent of many network applications has led to a tremendous amount of network traffic. A network operator must provide quality of service for each application on the network. To accomplish this goal, various studies have focused on accurately classifying application network traffic. Network management requires technology to classify network traffic without the intervention of the network operator. In this study, we generate packet-based datasets through our own network traffic pre-processing. We train five deep learning models using the convolutional neural network (CNN) and residual network (ResNet) to perform network traffic classification. Finally, we analyze the network traffic classification performance of packet-based datasets using the f1 score of the CNN and ResNet deep learning models, and demonstrate their effectiveness.","PeriodicalId":273383,"journal":{"name":"2019 International Conference on Artificial Intelligence in Information and Communication (ICAIIC)","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"64","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Artificial Intelligence in Information and Communication (ICAIIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAIIC.2019.8669045","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 64

Abstract

Recently, the advent of many network applications has led to a tremendous amount of network traffic. A network operator must provide quality of service for each application on the network. To accomplish this goal, various studies have focused on accurately classifying application network traffic. Network management requires technology to classify network traffic without the intervention of the network operator. In this study, we generate packet-based datasets through our own network traffic pre-processing. We train five deep learning models using the convolutional neural network (CNN) and residual network (ResNet) to perform network traffic classification. Finally, we analyze the network traffic classification performance of packet-based datasets using the f1 score of the CNN and ResNet deep learning models, and demonstrate their effectiveness.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于包的深度学习网络流量分类
最近,许多网络应用程序的出现导致了大量的网络流量。网络运营商必须为网络上的每个应用程序提供高质量的服务。为了实现这一目标,各种研究都集中在对应用网络流量进行准确分类上。网络管理需要在没有网络运营商干预的情况下对网络流量进行分类的技术。在本研究中,我们通过自己的网络流量预处理生成基于数据包的数据集。我们使用卷积神经网络(CNN)和残差网络(ResNet)训练了五个深度学习模型来执行网络流量分类。最后,我们使用CNN和ResNet深度学习模型的f1分数分析了基于数据包的数据集的网络流量分类性能,并证明了它们的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Stock Prices Prediction using the Title of Newspaper Articles with Korean Natural Language Processing Deep learning based decomposition of brain networks Simulation on Delay of Several Random Access Schemes A Machine-Learning-Based Channel Assignment Algorithm for IoT The Properties of mode prediction using mean root error for regularization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1