Matching feature points and discarding false matching pairs

Y. Wu, M. Dai
{"title":"Matching feature points and discarding false matching pairs","authors":"Y. Wu, M. Dai","doi":"10.1109/ICIA.2005.1635132","DOIUrl":null,"url":null,"abstract":"The approach is to integrate some traditional matching methods of feature point, and proposes a matching method of the feature points based on the fuzzy similarity measure of the feature points. For obtaining the complete matching between two sets of the feature points that hold the fuzzy similarity measure, we employ Hungarian method. For discarding the false matches from the matching result using Hungarian method, we employ the constraint of the epipolar geometry. Finally some experimental results are reported, which show the good performance of our scheme.","PeriodicalId":136611,"journal":{"name":"2005 IEEE International Conference on Information Acquisition","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2005 IEEE International Conference on Information Acquisition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIA.2005.1635132","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

The approach is to integrate some traditional matching methods of feature point, and proposes a matching method of the feature points based on the fuzzy similarity measure of the feature points. For obtaining the complete matching between two sets of the feature points that hold the fuzzy similarity measure, we employ Hungarian method. For discarding the false matches from the matching result using Hungarian method, we employ the constraint of the epipolar geometry. Finally some experimental results are reported, which show the good performance of our scheme.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
匹配特征点,丢弃错误的匹配对
该方法综合了传统的特征点匹配方法,提出了一种基于特征点模糊相似度度量的特征点匹配方法。为了获得两组具有模糊相似度量的特征点之间的完全匹配,我们采用了匈牙利方法。为了从匈牙利方法的匹配结果中剔除假匹配,我们采用了极几何的约束。最后给出了一些实验结果,表明了该方案的良好性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A wireless health monitoring system Haptic telemanipulation of soft environment without direct force feedback Leader-formation navigation with sensor constraints Kinematic model aided inertial motion tracking of human upper limb Study on adaptive Kalman filtering algorithms in human movement tracking
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1