{"title":"Nexus: Speculative Execution for Event-Driven Networking Programs","authors":"Huiba Li, Xicheng Lu, Yuxing Peng","doi":"10.1109/ICPADS.2010.113","DOIUrl":null,"url":null,"abstract":"The efficiency of communication is a key factor to the performance of networking applications, and concurrent communication is an important approach to the efficiency of communication. However, many concurrency opportunities are very difficult to exploit because they depend on some undeterministic conditions. If these conditions are highly predictable, speculative execution can be a very effective approach to cope with the uncertainties. Existing researches on speculation seldom target at networking systems, and none of them can handle the event-driven model that is very popular in such systems. In this paper, we propose Nexus, a novel speculation scheme that supports event-driven networking applications. Nexus analyzes the dependence relationship of events, and performs speculation according to the duality of events and threads. Evaluation on a prototype implementation of nexus shows that this approach can significantly reduces the time needed to complete an event-driven program.","PeriodicalId":365914,"journal":{"name":"2010 IEEE 16th International Conference on Parallel and Distributed Systems","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE 16th International Conference on Parallel and Distributed Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPADS.2010.113","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The efficiency of communication is a key factor to the performance of networking applications, and concurrent communication is an important approach to the efficiency of communication. However, many concurrency opportunities are very difficult to exploit because they depend on some undeterministic conditions. If these conditions are highly predictable, speculative execution can be a very effective approach to cope with the uncertainties. Existing researches on speculation seldom target at networking systems, and none of them can handle the event-driven model that is very popular in such systems. In this paper, we propose Nexus, a novel speculation scheme that supports event-driven networking applications. Nexus analyzes the dependence relationship of events, and performs speculation according to the duality of events and threads. Evaluation on a prototype implementation of nexus shows that this approach can significantly reduces the time needed to complete an event-driven program.