Yongli Cheng, F. Wang, Hong Jiang, Yu Hua, D. Feng, XiuNeng Wang
{"title":"LCC-Graph: A high-performance graph-processing framework with low communication costs","authors":"Yongli Cheng, F. Wang, Hong Jiang, Yu Hua, D. Feng, XiuNeng Wang","doi":"10.1109/IWQoS.2016.7590434","DOIUrl":null,"url":null,"abstract":"With the rapid growth of data, communication overhead has become an important concern in applications of data centers and cloud computing. However, existing distributed graph-processing frameworks routinely suffer from high communication costs, leading to very long waiting times experienced by users for the graph-computing results. In order to address this problem, we propose a new computation model with low communication costs, called LCC-BSP. We use this model to design and implement a high-performance distributed graph-processing framework called LCC-Graph. This framework eliminates the high communication costs in existing distributed graph-processing frameworks. Moreover, LCC-Graph also minimizes the computation workload of each vertex, significantly reducing the computation time for each superstep. Evaluation of LCC-Graph on a 32-node cluster, driven by real-world graph datasets, shows that it significantly outperforms existing distributed graph-processing frameworks in terms of runtime, particularly when the system is supported by a high-bandwidth network. For example, LCC-Graph achieves an order of magnitude performance improvement over GPS and GraphLab.","PeriodicalId":304978,"journal":{"name":"2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWQoS.2016.7590434","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7
Abstract
With the rapid growth of data, communication overhead has become an important concern in applications of data centers and cloud computing. However, existing distributed graph-processing frameworks routinely suffer from high communication costs, leading to very long waiting times experienced by users for the graph-computing results. In order to address this problem, we propose a new computation model with low communication costs, called LCC-BSP. We use this model to design and implement a high-performance distributed graph-processing framework called LCC-Graph. This framework eliminates the high communication costs in existing distributed graph-processing frameworks. Moreover, LCC-Graph also minimizes the computation workload of each vertex, significantly reducing the computation time for each superstep. Evaluation of LCC-Graph on a 32-node cluster, driven by real-world graph datasets, shows that it significantly outperforms existing distributed graph-processing frameworks in terms of runtime, particularly when the system is supported by a high-bandwidth network. For example, LCC-Graph achieves an order of magnitude performance improvement over GPS and GraphLab.