Algorithms of crisp, fuzzy, and probabilistic clustering with semi-supervision or pairwise constraints

S. Miyamoto, Nobuhiro Obara
{"title":"Algorithms of crisp, fuzzy, and probabilistic clustering with semi-supervision or pairwise constraints","authors":"S. Miyamoto, Nobuhiro Obara","doi":"10.1109/GrC.2013.6740412","DOIUrl":null,"url":null,"abstract":"An overview of several algorithms of semi-supervised clustering or constrained clustering based on crisp, fuzzy, or probabilistic framework is given with new results. First, equivalence between an EM algorithm for a semi-supervised mixture distribution model and an extended version of KL-information fuzzy c-means is shown. Second, algorithms of constrained clustering are compared, where an extended COP K-means is considered. Third class of algorithms is a two-stage version of a combination of COP K-means and agglomerative clustering. Numerical examples are shown to observe characteristics of the algorithms discussed herein.","PeriodicalId":415445,"journal":{"name":"2013 IEEE International Conference on Granular Computing (GrC)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Conference on Granular Computing (GrC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GrC.2013.6740412","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

An overview of several algorithms of semi-supervised clustering or constrained clustering based on crisp, fuzzy, or probabilistic framework is given with new results. First, equivalence between an EM algorithm for a semi-supervised mixture distribution model and an extended version of KL-information fuzzy c-means is shown. Second, algorithms of constrained clustering are compared, where an extended COP K-means is considered. Third class of algorithms is a two-stage version of a combination of COP K-means and agglomerative clustering. Numerical examples are shown to observe characteristics of the algorithms discussed herein.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
具有半监督或成对约束的清晰、模糊和概率聚类算法
综述了几种基于清晰、模糊或概率框架的半监督聚类或约束聚类算法,并给出了新的结果。首先,证明了半监督混合分布模型的EM算法与kl -信息模糊c均值的扩展版本之间的等价性。其次,比较了约束聚类的算法,其中考虑了扩展的COP K-means。第三类算法是COP K-means和聚集聚类的两阶段结合。通过数值算例观察了所讨论算法的特点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An adaptive group recommender based on overlapping community detection An ad-hoc clustering algorithm based on ant colony algorithm Clothes style recommendation system Predicting movie sales revenue using online reviews Dimension reduction based on categorical fuzzy correlation degree for document categorization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1