Learning Highlight Separation of Real High Resolution Portrait Image

Ruikang Ju, Dongdong Weng, Bin Liang
{"title":"Learning Highlight Separation of Real High Resolution Portrait Image","authors":"Ruikang Ju, Dongdong Weng, Bin Liang","doi":"10.1145/3484274.3484278","DOIUrl":null,"url":null,"abstract":"∗This work presents an approach for highlight separation of real high resolution portrait image. In order to obtain reliable ground truth of real images, a controllable portrait image collection system with 156 groups of light sources has been built. It has 4 cameras to collect the portrait images of 36 subjects from different angles, and then we use 4 data processing strategies on these images to obtain 4 training datasets. Based on these datasets, 4 U-Net networks are trained by using a single image as input. To test and evaluate, we input the 2560*2560 resolution images into 4 models, and finally determine the best data processing strategy and trained network. Our method creates precise and believable highlight separation results for 2560*2560 high resolution images, including when the subject is not looking straight at the camera.","PeriodicalId":143540,"journal":{"name":"Proceedings of the 4th International Conference on Control and Computer Vision","volume":"140 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 4th International Conference on Control and Computer Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3484274.3484278","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

∗This work presents an approach for highlight separation of real high resolution portrait image. In order to obtain reliable ground truth of real images, a controllable portrait image collection system with 156 groups of light sources has been built. It has 4 cameras to collect the portrait images of 36 subjects from different angles, and then we use 4 data processing strategies on these images to obtain 4 training datasets. Based on these datasets, 4 U-Net networks are trained by using a single image as input. To test and evaluate, we input the 2560*2560 resolution images into 4 models, and finally determine the best data processing strategy and trained network. Our method creates precise and believable highlight separation results for 2560*2560 high resolution images, including when the subject is not looking straight at the camera.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
学习突出分离真正的高分辨率肖像图像
*这项工作提出了一种真正的高分辨率肖像图像的高光分离方法。为了获得真实图像可靠的地面真实度,构建了包含156组光源的可控人像图像采集系统。它有4个摄像头,从不同角度采集36个被试的人像图像,然后我们对这些图像使用4种数据处理策略,得到4个训练数据集。基于这些数据集,使用单个图像作为输入来训练4个U-Net网络。为了测试和评估,我们将2560*2560分辨率的图像输入到4个模型中,最终确定最佳的数据处理策略和训练好的网络。我们的方法为2560*2560高分辨率图像创建精确可信的高光分离结果,包括当主体不直视相机时。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An Object Detection Algorithm Combining FPN Structure With DETR DIB: Piled Man-made Object Detection and Pose Estimation in Point Cloud Blocks A Multi-Scale Self-Attention Network for Diabetic Retinopathy Retrieval Ensemble Multilayer Perceptron Model for Day-ahead Photovoltaic Forecasting Improvement of Detection Rate for Small Objects Using Pre-processing Network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1