Clustering Ontology-enriched Graph Representation for Biomedical Documents based on Scale-Free Network Theory

Illhoi Yoo, Xiaohua Hu
{"title":"Clustering Ontology-enriched Graph Representation for Biomedical Documents based on Scale-Free Network Theory","authors":"Illhoi Yoo, Xiaohua Hu","doi":"10.1109/IS.2006.348532","DOIUrl":null,"url":null,"abstract":"In this paper we introduce a novel document clustering approach that solves some major problems of traditional document clustering approaches. Instead of depending on traditional vector space model, this approach represents documents as graphs using domain knowledge in ontology because graphs can represent the semantic relationships among the concepts in documents. Based on scale-free network theory, our approach generates a model for each document cluster from the ontology-enriched graph representation by identifying k high density subgraphs capturing the core semantic relationship information about each document cluster. Using these k high density subgraphs, each document is assigned to a proper document cluster. Our extensive experimental results on MEDLINE articles show that our approach outperforms two leading document clustering algorithms, BiSecting K-means and CLUTO's vcluster. Moreover, our approach provides a meaningful explanation for document clustering through generated models. This explanation helps users to understand clustering results and documents as a whole","PeriodicalId":116809,"journal":{"name":"2006 3rd International IEEE Conference Intelligent Systems","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 3rd International IEEE Conference Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IS.2006.348532","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

In this paper we introduce a novel document clustering approach that solves some major problems of traditional document clustering approaches. Instead of depending on traditional vector space model, this approach represents documents as graphs using domain knowledge in ontology because graphs can represent the semantic relationships among the concepts in documents. Based on scale-free network theory, our approach generates a model for each document cluster from the ontology-enriched graph representation by identifying k high density subgraphs capturing the core semantic relationship information about each document cluster. Using these k high density subgraphs, each document is assigned to a proper document cluster. Our extensive experimental results on MEDLINE articles show that our approach outperforms two leading document clustering algorithms, BiSecting K-means and CLUTO's vcluster. Moreover, our approach provides a meaningful explanation for document clustering through generated models. This explanation helps users to understand clustering results and documents as a whole
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于无标度网络理论的生物医学文献聚类本体富图表示
本文提出了一种新的文档聚类方法,解决了传统文档聚类方法存在的一些主要问题。这种方法不依赖于传统的向量空间模型,而是利用本体中的领域知识将文档表示为图形,因为图形可以表示文档中概念之间的语义关系。该方法基于无标度网络理论,通过识别k个高密度子图,捕获每个文档簇的核心语义关系信息,从本体丰富的图表示中为每个文档簇生成模型。使用这k个高密度子图,每个文档被分配到一个适当的文档集群。我们在MEDLINE文章上的大量实验结果表明,我们的方法优于两种领先的文档聚类算法,即平分K-means和CLUTO的vcluster。此外,我们的方法通过生成的模型为文档聚类提供了有意义的解释。这个解释有助于用户从整体上理解聚类结果和文档
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Neurofuzzy Adaptive Kalman Filter Artificial Intelligence Technique for Gene Expression Profiling of Urinary Bladder Cancer Evolutionary Support Vector Machines for Diabetes Mellitus Diagnosis IGUANA: Individuation of Global Unsafe ANomalies and Alarm activation Smart Data Analysis Services
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1