{"title":"CyHOP: A generic framework for real-time power-performance optimization in networked wearable motion sensors","authors":"Ramin Fallahzadeh, Hassan Ghasemzadeh","doi":"10.1109/ICCD.2016.7753320","DOIUrl":null,"url":null,"abstract":"Power consumption is a major obstacle in designing stringent resource constraint wearables. Several system-level design considerations contribute to energy consumption of these systems which must be taken into account while designing the system. We propose a power-performance optimization framework, namely CyHOP (Cyclic and Holistic Optimization framework), for connected wearable motion sensors. While existing work focus solely on one design parameter, our approach globally trades-off the performance of activity recognition and power consumption. CyHOP is capable of optimally adjusting the system to fulfill specific application needs. Using a smoothing technique, the initial multi-variate non-convex optimization problem is reduced to a convex problem and solved using our devised derivative-free optimization approach, namely, cyclic coordinate search. Our model performs a linear search by cycling through the system variables on each iteration until it converges to the global optimum. Using real-world data collected with wearable motion sensors during activity monitoring, we validate our approached with various performance thresholds ranging from 40% to 80%.","PeriodicalId":297899,"journal":{"name":"2016 IEEE 34th International Conference on Computer Design (ICCD)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 34th International Conference on Computer Design (ICCD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCD.2016.7753320","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Power consumption is a major obstacle in designing stringent resource constraint wearables. Several system-level design considerations contribute to energy consumption of these systems which must be taken into account while designing the system. We propose a power-performance optimization framework, namely CyHOP (Cyclic and Holistic Optimization framework), for connected wearable motion sensors. While existing work focus solely on one design parameter, our approach globally trades-off the performance of activity recognition and power consumption. CyHOP is capable of optimally adjusting the system to fulfill specific application needs. Using a smoothing technique, the initial multi-variate non-convex optimization problem is reduced to a convex problem and solved using our devised derivative-free optimization approach, namely, cyclic coordinate search. Our model performs a linear search by cycling through the system variables on each iteration until it converges to the global optimum. Using real-world data collected with wearable motion sensors during activity monitoring, we validate our approached with various performance thresholds ranging from 40% to 80%.