The Effectiveness of the Piecewise Monotonic Approximation Method for the Peak Estimation of Noisy Univariate Spectra

I. C. Demetriou, Ioannis N. Perdikas
{"title":"The Effectiveness of the Piecewise Monotonic Approximation Method for the Peak Estimation of Noisy Univariate Spectra","authors":"I. C. Demetriou, Ioannis N. Perdikas","doi":"10.1109/ICCAIRO47923.2019.00020","DOIUrl":null,"url":null,"abstract":"We present examples of peak estimation to measurements of Raman, Infrared and NMR spectra by the piecewise monotonic data approximation method. The structural differences of these spectra, the complexity of the underlying physical laws and the error included in the measurements make this a good test of the effectiveness of the method. Precisely, if a number of monotonic sections of the data is required, then the optimal turning points and the least sum of squares of residuals are computed in quadratic complexity with respect to the number of data. This is a remarkable result because the problem may require an enormous number of combinations in order to find the optimal turning point positions. Our results exhibit some strengths and indicate certain advantages of the method. Therefore, they may be helpful to the development of new algorithms that are particularly suitable for peak estimation in spectroscopy calculations.","PeriodicalId":297342,"journal":{"name":"2019 International Conference on Control, Artificial Intelligence, Robotics & Optimization (ICCAIRO)","volume":"66 12","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Control, Artificial Intelligence, Robotics & Optimization (ICCAIRO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCAIRO47923.2019.00020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We present examples of peak estimation to measurements of Raman, Infrared and NMR spectra by the piecewise monotonic data approximation method. The structural differences of these spectra, the complexity of the underlying physical laws and the error included in the measurements make this a good test of the effectiveness of the method. Precisely, if a number of monotonic sections of the data is required, then the optimal turning points and the least sum of squares of residuals are computed in quadratic complexity with respect to the number of data. This is a remarkable result because the problem may require an enormous number of combinations in order to find the optimal turning point positions. Our results exhibit some strengths and indicate certain advantages of the method. Therefore, they may be helpful to the development of new algorithms that are particularly suitable for peak estimation in spectroscopy calculations.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
分段单调逼近法在有噪声单变量谱峰估计中的有效性
我们给出了用分段单调数据近似方法对拉曼光谱、红外光谱和核磁共振光谱测量进行峰估计的例子。这些光谱的结构差异、潜在物理定律的复杂性以及测量中包含的误差使该方法的有效性得到了很好的验证。准确地说,如果需要数据的许多单调部分,则以相对于数据数量的二次复杂度计算最佳拐点和最小残差平方和。这是一个显著的结果,因为这个问题可能需要大量的组合才能找到最佳的转折点位置。我们的结果显示出一些优势,并表明该方法具有一定的优势。因此,它们可能有助于开发特别适用于光谱计算中的峰值估计的新算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Dynamic Mixture Ratio Model Developing a System Dynamics Model for Creating a Learning Sustainable Mobility Culture [Title page i] Surface Roughness Optimization of Poly-Jet 3D Printing Using Grey Taguchi Method [Copyright notice]
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1