High-homogeneity functional parcellation of human brain for investigating robust functional connectivity

Xiangyu Liu, Hua Xie, B. Nutter, S. Mitra
{"title":"High-homogeneity functional parcellation of human brain for investigating robust functional connectivity","authors":"Xiangyu Liu, Hua Xie, B. Nutter, S. Mitra","doi":"10.1109/SSIAI.2018.8470321","DOIUrl":null,"url":null,"abstract":"Over the years, resting state functional magnetic resonance imaging (rsfMRI) has been a preferred design tool to analyze human brain functions and brain parcellations. Several different statistical methods have been proposed to study functional connectivity and generate various parcellation atlases based on corresponding connectivity maps. In this study, we employ a sliding window correlation method to generate accurate individual voxel-wise dynamic functional connectivity maps, based on which the brain can be parcellated into highly homogeneous functional parcels. Because there is no ground truth for functional brain parcellation, we accomplish parcellation via k-means clustering to compare with other available parcellations. With temporal characteristics of functional connectivity taken into consideration, high homogeneity can be observed in high resolution parcellation of human brain.","PeriodicalId":422209,"journal":{"name":"2018 IEEE Southwest Symposium on Image Analysis and Interpretation (SSIAI)","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Southwest Symposium on Image Analysis and Interpretation (SSIAI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSIAI.2018.8470321","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Over the years, resting state functional magnetic resonance imaging (rsfMRI) has been a preferred design tool to analyze human brain functions and brain parcellations. Several different statistical methods have been proposed to study functional connectivity and generate various parcellation atlases based on corresponding connectivity maps. In this study, we employ a sliding window correlation method to generate accurate individual voxel-wise dynamic functional connectivity maps, based on which the brain can be parcellated into highly homogeneous functional parcels. Because there is no ground truth for functional brain parcellation, we accomplish parcellation via k-means clustering to compare with other available parcellations. With temporal characteristics of functional connectivity taken into consideration, high homogeneity can be observed in high resolution parcellation of human brain.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
人脑高同质性功能分割研究鲁棒性功能连接
多年来,静息状态功能磁共振成像(rsfMRI)一直是分析人脑功能和脑包裹的首选设计工具。人们提出了几种不同的统计方法来研究功能连通性,并根据相应的连通性图生成各种分区地图集。在这项研究中,我们采用滑动窗口相关方法来生成准确的个体体素动态功能连接图,在此基础上,大脑可以被分割成高度均匀的功能包。因为没有关于功能性脑分割的基本事实,我们通过k-means聚类来完成分割,以与其他可用的分割进行比较。考虑到功能连接的时间特征,在人脑高分辨率分割中可以观察到高度的同质性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Graph Modularity and Randomness Measures : A Comparative Study Drive-Net: Convolutional Network for Driver Distraction Detection In-between and cross-frequency dependence-based summarization of resting-state fMRI data A Ground-Truth Fusion Method for Image Segmentation Evaluation Sleep Analysis Using Motion and Head Detection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1