Optimal Bounds on Nonlinear Partial Differential Equations in Model Certification, Validation, and Experiment Design

M. McKerns, F. Alexander, K. Hickmann, T. Sullivan, D. Sciences, Los Alamos National Laboratory, Computational Science Initiative, B. N. Laboratory, Vérification, Analysis, Institute of Applied Mathematics, Free University of Berlin
{"title":"Optimal Bounds on Nonlinear Partial Differential Equations in Model Certification, Validation, and Experiment Design","authors":"M. McKerns, F. Alexander, K. Hickmann, T. Sullivan, D. Sciences, Los Alamos National Laboratory, Computational Science Initiative, B. N. Laboratory, Vérification, Analysis, Institute of Applied Mathematics, Free University of Berlin","doi":"10.1142/9789811204579_0014 10.1142/11389","DOIUrl":null,"url":null,"abstract":"We demonstrate that the recently developed Optimal Uncertainty Quantification (OUQ) theory, combined with recent software enabling fast global solutions of constrained non-convex optimization problems, provides a methodology for rigorous model certification, validation, and optimal design under uncertainty. In particular, we show the utility of the OUQ approach to understanding the behavior of a system that is governed by a partial differential equation -- Burgers' equation. We solve the problem of predicting shock location when we only know bounds on viscosity and on the initial conditions. Through this example, we demonstrate the potential to apply OUQ to complex physical systems, such as systems governed by coupled partial differential equations. We compare our results to those obtained using a standard Monte Carlo approach, and show that OUQ provides more accurate bounds at a lower computational cost. We discuss briefly about how to extend this approach to more complex systems, and how to integrate our approach into a more ambitious program of optimal experimental design.","PeriodicalId":318116,"journal":{"name":"Handbook on Big Data and Machine Learning in the Physical Sciences","volume":"82 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Handbook on Big Data and Machine Learning in the Physical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/9789811204579_0014 10.1142/11389","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

We demonstrate that the recently developed Optimal Uncertainty Quantification (OUQ) theory, combined with recent software enabling fast global solutions of constrained non-convex optimization problems, provides a methodology for rigorous model certification, validation, and optimal design under uncertainty. In particular, we show the utility of the OUQ approach to understanding the behavior of a system that is governed by a partial differential equation -- Burgers' equation. We solve the problem of predicting shock location when we only know bounds on viscosity and on the initial conditions. Through this example, we demonstrate the potential to apply OUQ to complex physical systems, such as systems governed by coupled partial differential equations. We compare our results to those obtained using a standard Monte Carlo approach, and show that OUQ provides more accurate bounds at a lower computational cost. We discuss briefly about how to extend this approach to more complex systems, and how to integrate our approach into a more ambitious program of optimal experimental design.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
非线性偏微分方程在模型验证、验证和实验设计中的最优界
我们证明了最近发展的最优不确定性量化(OUQ)理论,结合最近的软件,使约束非凸优化问题的快速全局解决方案,为不确定性下严格的模型认证,验证和优化设计提供了一种方法。特别是,我们展示了OUQ方法在理解由偏微分方程(Burgers’equation)控制的系统行为方面的效用。我们解决了当只知道粘度和初始条件的边界时激波位置的预测问题。通过这个例子,我们展示了将OUQ应用于复杂物理系统的潜力,例如由耦合偏微分方程控制的系统。我们将我们的结果与使用标准蒙特卡罗方法获得的结果进行了比较,并表明OUQ以更低的计算成本提供了更准确的边界。我们简要讨论了如何将这种方法扩展到更复杂的系统,以及如何将我们的方法整合到更雄心勃勃的最佳实验设计方案中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Materials Informatics and Data System for Polymer Nanocomposites Analysis and Design FRONT MATTER BACK MATTER BACK MATTER Machine-Learning Assisted Structure Determination of Metallic Nanoparticles: A Benchmark
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1