Multiobjective permutation flow shop scheduling using MOEA/D with local search

Yu-Teng Chang, T. Chiang
{"title":"Multiobjective permutation flow shop scheduling using MOEA/D with local search","authors":"Yu-Teng Chang, T. Chiang","doi":"10.1109/TAAI.2016.7880168","DOIUrl":null,"url":null,"abstract":"This paper addresses the multiobjective permutation flow shop scheduling problem, where makespan and total flow time are to be minimized simultaneously. We solve the problem by an extended version of the multiobjective evolutionary algorithm based on decomposition (MOEA/D). We investigate the effects of scalarization functions and the replacement mechanism. We also incorporate local search into MOEA/D and investigate design issues including individuals to do local search and resource allocation. Experiments are conducted on 90 public problem instances with different scale, and research findings are reported. Comparing with the state of the art, our algorithm shows competitive performance on small-scale instances and superior performance on medium- and large-scale instances.","PeriodicalId":159858,"journal":{"name":"2016 Conference on Technologies and Applications of Artificial Intelligence (TAAI)","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 Conference on Technologies and Applications of Artificial Intelligence (TAAI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TAAI.2016.7880168","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

This paper addresses the multiobjective permutation flow shop scheduling problem, where makespan and total flow time are to be minimized simultaneously. We solve the problem by an extended version of the multiobjective evolutionary algorithm based on decomposition (MOEA/D). We investigate the effects of scalarization functions and the replacement mechanism. We also incorporate local search into MOEA/D and investigate design issues including individuals to do local search and resource allocation. Experiments are conducted on 90 public problem instances with different scale, and research findings are reported. Comparing with the state of the art, our algorithm shows competitive performance on small-scale instances and superior performance on medium- and large-scale instances.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于局部搜索的多目标置换流水车间调度
研究了以最大完工时间和总流时间同时最小化为目标的多目标置换流水车间调度问题。我们用基于分解的多目标进化算法(MOEA/D)的扩展版本来解决这个问题。我们研究了标度函数的影响和替换机制。我们还将本地搜索整合到MOEA/D中,并调查设计问题,包括个人进行本地搜索和资源分配。对90个不同规模的公共问题实例进行了实验,并报告了研究结果。与现有算法相比,我们的算法在小规模实例上表现出竞争力,在中型和大型实例上表现出优异的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A cluster-based opinion leader discovery in social network User behavior analysis and commodity recommendation for point-earning apps Extraction of proper names from myanmar text using latent dirichlet allocation Heuristic algorithm for target coverage with connectivity fault-tolerance problem in wireless sensor networks AFIS: Aligning detail-pages for full schema induction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1