Digital Technology in Agriculture: An Approach to Modelling Crop Productivity on Trace Elements Contaminated Soil

C. Nurzhanov, L. Naizabayeva, T. Mazakov
{"title":"Digital Technology in Agriculture: An Approach to Modelling Crop Productivity on Trace Elements Contaminated Soil","authors":"C. Nurzhanov, L. Naizabayeva, T. Mazakov","doi":"10.1109/SIST58284.2023.10223574","DOIUrl":null,"url":null,"abstract":"The article focuses on the use of climate data in modelling crop productivity and highlights the im-portance of continuous incoming meteorological infor-mation in predicting crop yields. The purpose of Article is to evaluate the challenges and potential of utilizing big data using climate data as an ex-ample for modelling crop productivity on contaminated sites with trace elements. The “MiscanCalc” and “Group Method of Data Han-dling” were developed to predict crop yields on soils con-taminated with toxic elements using meteorological data. These models evaluate the impact of climate data on bio-mass production, ripening and harvest periods, estimate future crop yields, and identify the predictors that have the greatest influence on these indicators.","PeriodicalId":367406,"journal":{"name":"2023 IEEE International Conference on Smart Information Systems and Technologies (SIST)","volume":"268 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE International Conference on Smart Information Systems and Technologies (SIST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SIST58284.2023.10223574","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The article focuses on the use of climate data in modelling crop productivity and highlights the im-portance of continuous incoming meteorological infor-mation in predicting crop yields. The purpose of Article is to evaluate the challenges and potential of utilizing big data using climate data as an ex-ample for modelling crop productivity on contaminated sites with trace elements. The “MiscanCalc” and “Group Method of Data Han-dling” were developed to predict crop yields on soils con-taminated with toxic elements using meteorological data. These models evaluate the impact of climate data on bio-mass production, ripening and harvest periods, estimate future crop yields, and identify the predictors that have the greatest influence on these indicators.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
农业中的数字技术:一种基于微量元素污染土壤的作物生产力建模方法
本文重点介绍了气候数据在作物产量建模中的应用,并强调了连续传入的气象信息在预测作物产量方面的重要性。本文的目的是评估利用大数据的挑战和潜力,以气候数据为例,对受微量元素污染地点的作物生产力进行建模。开发了“miscanalc”和“数据处理组方法”,利用气象数据预测受有毒元素污染土壤的作物产量。这些模型评估气候数据对生物批量生产、成熟和收获期的影响,估计未来作物产量,并确定对这些指标影响最大的预测因子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
University Distributed Computer Network Vulnerability Assessment Performance Analysis of Scaling NoSQL vs SQL: A Comparative Study of MongoDB, Cassandra, and PostgreSQL Analysis of the EMF Parameters of the Stator Winding in the Run-Down Mode for Diagnosing Faults in an Induction Motor About the Need to Attract Girls to Education Using the Stem Methodology in the Informatics Educational Program Preservation of Confidentiality Based on Homomorphic Encryption Library for IoT
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1