Effort Prediction in Iterative Software Development Processes -- Incremental Versus Global Prediction Models

Pekka Abrahamsson, Raimund Moser, W. Pedrycz, A. Sillitti, G. Succi
{"title":"Effort Prediction in Iterative Software Development Processes -- Incremental Versus Global Prediction Models","authors":"Pekka Abrahamsson, Raimund Moser, W. Pedrycz, A. Sillitti, G. Succi","doi":"10.1109/ESEM.2007.16","DOIUrl":null,"url":null,"abstract":"Estimation of development effort without imposing overhead on the project and the development team is of paramount importance for any software company. This study proposes a new effort estimation methodology aimed at agile and iterative development environments not suitable for description by traditional prediction methods. We propose a detailed development methodology, discuss a number of architectures of such models (including a wealth of augmented regression models and neural networks) and include a thorough case study of Extreme Programming (XP) in two semi-industrial projects. The results of this research evidence that in the XP environment under study the proposed incremental model outperforms traditional estimation techniques most notably in early phases of development. Moreover, when dealing with new projects, the incremental model can be developed from scratch without resorting itself to historic data.","PeriodicalId":124420,"journal":{"name":"First International Symposium on Empirical Software Engineering and Measurement (ESEM 2007)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"109","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"First International Symposium on Empirical Software Engineering and Measurement (ESEM 2007)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ESEM.2007.16","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 109

Abstract

Estimation of development effort without imposing overhead on the project and the development team is of paramount importance for any software company. This study proposes a new effort estimation methodology aimed at agile and iterative development environments not suitable for description by traditional prediction methods. We propose a detailed development methodology, discuss a number of architectures of such models (including a wealth of augmented regression models and neural networks) and include a thorough case study of Extreme Programming (XP) in two semi-industrial projects. The results of this research evidence that in the XP environment under study the proposed incremental model outperforms traditional estimation techniques most notably in early phases of development. Moreover, when dealing with new projects, the incremental model can be developed from scratch without resorting itself to historic data.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
迭代软件开发过程中的工作量预测——增量预测模型与全局预测模型
对任何软件公司来说,在不增加项目和开发团队开销的情况下评估开发工作是至关重要的。针对敏捷迭代开发环境中不适合用传统预测方法描述的问题,提出了一种新的工作量估算方法。我们提出了一种详细的开发方法,讨论了这种模型的许多体系结构(包括丰富的增强回归模型和神经网络),并在两个半工业项目中包含了极限编程(XP)的全面案例研究。这项研究的结果证明,在所研究的XP环境中,建议的增量模型在开发的早期阶段胜过传统的评估技术。此外,在处理新项目时,增量模型可以从零开始开发,而无需求助于历史数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Comparing Model Generated with Expert Generated IV&V Activity Plans Decision Support with EMPEROR A cost effectiveness indicator for software development Fine-Grained Software Metrics in Practice Automated Information Extraction from Empirical Software Engineering Literature: Is that possible?
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1