Design of a loop-gap resonator with bimodal uniform fields using finite element analysis

M. Libersky, D. Silevitch, A. Kouki
{"title":"Design of a loop-gap resonator with bimodal uniform fields using finite element analysis","authors":"M. Libersky, D. Silevitch, A. Kouki","doi":"10.1109/COMPUMAG45669.2019.9032729","DOIUrl":null,"url":null,"abstract":"The loop-gap resonator (LGR) was originally developed to provide a uniform microwave magnetic field on a sample for electron spin resonance (ESR) experiments. The LGR is composed of one or more loops and gaps acting as inductances and capacitances respectively. Typical LGR designs produce a uniform field on a sample at a single resonant frequency, but for certain experiments it is necessary to study the response of a material to uniform fields at multiple frequencies applied simultaneously. In this work we develop an empirical design procedure using finite element method calculations to design an asymmetric loop-gap resonator with uniform fields at two frequencies in the same sample volume and analyze the field uniformity, frequency tunability and filling factors, providing comparison to a manufactured device.","PeriodicalId":317315,"journal":{"name":"2019 22nd International Conference on the Computation of Electromagnetic Fields (COMPUMAG)","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 22nd International Conference on the Computation of Electromagnetic Fields (COMPUMAG)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/COMPUMAG45669.2019.9032729","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The loop-gap resonator (LGR) was originally developed to provide a uniform microwave magnetic field on a sample for electron spin resonance (ESR) experiments. The LGR is composed of one or more loops and gaps acting as inductances and capacitances respectively. Typical LGR designs produce a uniform field on a sample at a single resonant frequency, but for certain experiments it is necessary to study the response of a material to uniform fields at multiple frequencies applied simultaneously. In this work we develop an empirical design procedure using finite element method calculations to design an asymmetric loop-gap resonator with uniform fields at two frequencies in the same sample volume and analyze the field uniformity, frequency tunability and filling factors, providing comparison to a manufactured device.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
双峰均匀场环隙谐振腔的有限元设计
环隙谐振器(LGR)最初是为了在电子自旋共振(ESR)实验中为样品提供均匀的微波磁场而开发的。LGR由一个或多个回路和间隙组成,回路和间隙分别充当电感和电容。典型的LGR设计在单个谐振频率下对样品产生均匀场,但在某些实验中,有必要研究材料对同时施加多个频率的均匀场的响应。在这项工作中,我们开发了一种使用有限元方法计算的经验设计程序,以设计在相同样本量下具有两个频率均匀场的非对称环隙谐振器,并分析了场均匀性,频率可调性和填充因子,并与制造设备进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Application of Conditional Variational Auto-Encoder to Magnetic Circuit Design with Magnetic Field Computation Modeling of Magnetic Pickups for Electric Musical Instruments Fast Methods for Speeding up the Induction Machine Simulation Modelling Demagnetized Permanent Magnet Synchronous Generators using Permeance Network Model with Variable Flux Sources Tree gauging in lossy high frequency FEM models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1