Dremel

Chenxingyu Zhao, Tapan Chugh, Jaehong Min, Ming Liu, A. Krishnamurthy
{"title":"Dremel","authors":"Chenxingyu Zhao, Tapan Chugh, Jaehong Min, Ming Liu, A. Krishnamurthy","doi":"10.1145/3530903","DOIUrl":null,"url":null,"abstract":"LSM-tree-based key-value stores like RocksDB are widely used to support many applications. However, configuring a RocksDB instance is challenging for the following reasons: 1) RocksDB has a massive parameter space to configure; 2) there are inherent trade-offs and dependencies between parameters; 3) right configurations are dependent on workload and hardware; and 4) evaluating configurations is time-consuming. Prior works struggle with handling the curse of dimensionality, capturing relationships between parameters, adapting configurations to workload and hardware, and evaluating quickly. In this work, we present a system, Dremel, to adaptively and quickly configure RocksDB with strategies based on the Multi-Armed Bandit model. To handle the massive parameter space, we propose using fused features, which encode domain-specific knowledge, to work as a compact and powerful representation for configurations. To adapt to the workload and hardware, we build an online bandit model to identify the best configuration. To evaluate quickly, we enable multi-fidelity evaluation and upper-confidence-bound sampling to speed up identifying the best configuration. Dremel not only achieves up to ×2.61 higher IOPS and 57% less latency than default configurations but also achieves up to 63% improvements over prior works on 18 different settings with the same or less time budget.","PeriodicalId":426760,"journal":{"name":"Proceedings of the ACM on Measurement and Analysis of Computing Systems","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ACM on Measurement and Analysis of Computing Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3530903","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

LSM-tree-based key-value stores like RocksDB are widely used to support many applications. However, configuring a RocksDB instance is challenging for the following reasons: 1) RocksDB has a massive parameter space to configure; 2) there are inherent trade-offs and dependencies between parameters; 3) right configurations are dependent on workload and hardware; and 4) evaluating configurations is time-consuming. Prior works struggle with handling the curse of dimensionality, capturing relationships between parameters, adapting configurations to workload and hardware, and evaluating quickly. In this work, we present a system, Dremel, to adaptively and quickly configure RocksDB with strategies based on the Multi-Armed Bandit model. To handle the massive parameter space, we propose using fused features, which encode domain-specific knowledge, to work as a compact and powerful representation for configurations. To adapt to the workload and hardware, we build an online bandit model to identify the best configuration. To evaluate quickly, we enable multi-fidelity evaluation and upper-confidence-bound sampling to speed up identifying the best configuration. Dremel not only achieves up to ×2.61 higher IOPS and 57% less latency than default configurations but also achieves up to 63% improvements over prior works on 18 different settings with the same or less time budget.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Dremel
像RocksDB这样基于lsm树的键值存储被广泛用于支持许多应用程序。然而,配置一个RocksDB实例是具有挑战性的,原因如下:1)RocksDB有大量的参数空间需要配置;2)参数之间存在固有的权衡和依赖关系;3)正确的配置取决于工作负载和硬件;4)评估配置非常耗时。先前的工作与处理维度的诅咒、捕获参数之间的关系、调整配置以适应工作负载和硬件以及快速评估有关。在这项工作中,我们提出了一个基于Multi-Armed Bandit模型的自适应快速配置RocksDB的系统Dremel。为了处理大量的参数空间,我们提出使用融合特征来编码特定于领域的知识,作为一个紧凑而强大的配置表示。为了适应工作负载和硬件,我们建立了一个在线强盗模型来确定最佳配置。为了快速评估,我们启用了多保真度评估和上置信度采样来加速识别最佳配置。Dremel不仅实现了×2.61更高的IOPS和比默认配置少57%的延迟,而且在相同或更少的时间预算下,在18种不同的设置上实现了高达63%的改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.20
自引率
0.00%
发文量
0
期刊最新文献
A Large Scale Study and Classification of VirusTotal Reports on Phishing and Malware URLs POMACS V7, N2, June 2023 Editorial SplitRPC: A {Control + Data} Path Splitting RPC Stack for ML Inference Serving Smash: Flexible, Fast, and Resource-efficient Placement and Lookup of Distributed Storage Towards Accelerating Data Intensive Application's Shuffle Process Using SmartNICs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1