Chenxingyu Zhao, Tapan Chugh, Jaehong Min, Ming Liu, A. Krishnamurthy
{"title":"Dremel","authors":"Chenxingyu Zhao, Tapan Chugh, Jaehong Min, Ming Liu, A. Krishnamurthy","doi":"10.1145/3530903","DOIUrl":null,"url":null,"abstract":"LSM-tree-based key-value stores like RocksDB are widely used to support many applications. However, configuring a RocksDB instance is challenging for the following reasons: 1) RocksDB has a massive parameter space to configure; 2) there are inherent trade-offs and dependencies between parameters; 3) right configurations are dependent on workload and hardware; and 4) evaluating configurations is time-consuming. Prior works struggle with handling the curse of dimensionality, capturing relationships between parameters, adapting configurations to workload and hardware, and evaluating quickly. In this work, we present a system, Dremel, to adaptively and quickly configure RocksDB with strategies based on the Multi-Armed Bandit model. To handle the massive parameter space, we propose using fused features, which encode domain-specific knowledge, to work as a compact and powerful representation for configurations. To adapt to the workload and hardware, we build an online bandit model to identify the best configuration. To evaluate quickly, we enable multi-fidelity evaluation and upper-confidence-bound sampling to speed up identifying the best configuration. Dremel not only achieves up to ×2.61 higher IOPS and 57% less latency than default configurations but also achieves up to 63% improvements over prior works on 18 different settings with the same or less time budget.","PeriodicalId":426760,"journal":{"name":"Proceedings of the ACM on Measurement and Analysis of Computing Systems","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ACM on Measurement and Analysis of Computing Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3530903","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
LSM-tree-based key-value stores like RocksDB are widely used to support many applications. However, configuring a RocksDB instance is challenging for the following reasons: 1) RocksDB has a massive parameter space to configure; 2) there are inherent trade-offs and dependencies between parameters; 3) right configurations are dependent on workload and hardware; and 4) evaluating configurations is time-consuming. Prior works struggle with handling the curse of dimensionality, capturing relationships between parameters, adapting configurations to workload and hardware, and evaluating quickly. In this work, we present a system, Dremel, to adaptively and quickly configure RocksDB with strategies based on the Multi-Armed Bandit model. To handle the massive parameter space, we propose using fused features, which encode domain-specific knowledge, to work as a compact and powerful representation for configurations. To adapt to the workload and hardware, we build an online bandit model to identify the best configuration. To evaluate quickly, we enable multi-fidelity evaluation and upper-confidence-bound sampling to speed up identifying the best configuration. Dremel not only achieves up to ×2.61 higher IOPS and 57% less latency than default configurations but also achieves up to 63% improvements over prior works on 18 different settings with the same or less time budget.