Modulo: Drive-by Sensing at City-scale on the Cheap

Dhruv Agarwal, Srinivasan Iyengar, Manohar Swaminathan
{"title":"Modulo: Drive-by Sensing at City-scale on the Cheap","authors":"Dhruv Agarwal, Srinivasan Iyengar, Manohar Swaminathan","doi":"10.1145/3378393.3402275","DOIUrl":null,"url":null,"abstract":"Ambient air pollution in urban areas is a significant health hazard, with over 4.2 million deaths annually attributed to it. A crucial step in tackling these challenge is to measure air quality at a fine spatiotemporal granularity. A promising approach for several smart city projects, called drive-by sensing, is to leverage vehicles retrofitted with different sensors (pollution monitors, etc.) that can provide the desired spatiotemporal coverage at a fraction of the cost. However, deploying a drive-by sensing network at a city-scale to optimally select vehicles from a large fleet is still unexplored. In this paper, we propose Modulo -- a system to bootstrap drive-by sensing deployment by taking into consideration a variety of aspects such as spatiotemporal coverage, budget constraints. Modulo is well-suited to satisfy unique deployment constraints such as colocations with other sensors (needed for gas and PM sensor calibration), etc. We compare Modulo with two baseline algorithms on real-world taxi and bus datasets. Modulo significantly outperforms the baselines when a fleet comprises of both taxis and fixed-route vehicles such as public transport buses. Finally, we present a real-world case study that uses Modulo to select vehicles for an air pollution sensing application.","PeriodicalId":176951,"journal":{"name":"Proceedings of the 3rd ACM SIGCAS Conference on Computing and Sustainable Societies","volume":"258 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 3rd ACM SIGCAS Conference on Computing and Sustainable Societies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3378393.3402275","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

Ambient air pollution in urban areas is a significant health hazard, with over 4.2 million deaths annually attributed to it. A crucial step in tackling these challenge is to measure air quality at a fine spatiotemporal granularity. A promising approach for several smart city projects, called drive-by sensing, is to leverage vehicles retrofitted with different sensors (pollution monitors, etc.) that can provide the desired spatiotemporal coverage at a fraction of the cost. However, deploying a drive-by sensing network at a city-scale to optimally select vehicles from a large fleet is still unexplored. In this paper, we propose Modulo -- a system to bootstrap drive-by sensing deployment by taking into consideration a variety of aspects such as spatiotemporal coverage, budget constraints. Modulo is well-suited to satisfy unique deployment constraints such as colocations with other sensors (needed for gas and PM sensor calibration), etc. We compare Modulo with two baseline algorithms on real-world taxi and bus datasets. Modulo significantly outperforms the baselines when a fleet comprises of both taxis and fixed-route vehicles such as public transport buses. Finally, we present a real-world case study that uses Modulo to select vehicles for an air pollution sensing application.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
模组:城市规模的低成本驾驶感应
城市地区的环境空气污染严重危害健康,每年有420多万人因此死亡。应对这些挑战的关键一步是在精细的时空粒度上测量空气质量。在几个智能城市项目中,一种很有前途的方法被称为“行车感应”,即利用安装了不同传感器(污染监测器等)的车辆,以较低的成本提供所需的时空覆盖。然而,在城市范围内部署驾驶感应网络,以从大型车队中选择最佳车辆,仍未得到探索。在本文中,我们提出了Modulo——一个通过考虑诸如时空覆盖、预算约束等各个方面来引导驱动式传感部署的系统。Modulo非常适合满足独特的部署约束,例如与其他传感器的搭配(需要用于气体和PM传感器校准)等。我们将Modulo与现实世界出租车和公交车数据集上的两种基线算法进行比较。当车队由出租车和固定路线车辆(如公共交通巴士)组成时,Modulo的表现明显优于基线。最后,我们提出了一个现实世界的案例研究,使用模量来选择用于空气污染传感应用的车辆。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Extracting Features from Online Forums to Meet Social Needs of Breast Cancer Patients ICTs as Enablers of Resilient Social Capital for Ethnic Peace Persuasive information campaign to save water in Universities: An option for water-stressed areas? The "opaque panopticon": Why publishing data online doesn't make the State transparent? The case of India's livelihood program Competitive Cities: Establishing a Classification Model using Data Science-related Jobs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1