S. Zinno, Antonia Affinito, N. Pasquino, G. Ventre, A. Botta
{"title":"Prediction of RTT Through Radio-Layer Parameters in 4G/5G Dual-Connectivity Mobile Networks","authors":"S. Zinno, Antonia Affinito, N. Pasquino, G. Ventre, A. Botta","doi":"10.1109/ISCC58397.2023.10218091","DOIUrl":null,"url":null,"abstract":"With E-UTRA-NR Dual Connectivity, terminals can connect to 4G Long-Term Evolution and 5G New Radio networks at the same time. This technology allows using multiple bandwidths belonging to the two radio layers, enhancing the overall system performance. The system also adopts Multiple Input Multiple Output on top of the dual radio layer access. Authors predict application-layer Round-Trip Time with Machine Learning algorithms leveraging radio layer parameters such as received power and signal quality. Binary classification techniques are adopted to predict if Round-Trip Time values are above or below a threshold. The prediction is tested with real data collected in two measurement campaigns. Results show that Random Forest and Decision Tree Classifiers are the best algorithms with a precision score of respectively 0.84 and 0.92 in both measurement setups. They also evidence the radio- and physical-layer information having more importance for predicting application-layer RTT.","PeriodicalId":265337,"journal":{"name":"2023 IEEE Symposium on Computers and Communications (ISCC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE Symposium on Computers and Communications (ISCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCC58397.2023.10218091","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
With E-UTRA-NR Dual Connectivity, terminals can connect to 4G Long-Term Evolution and 5G New Radio networks at the same time. This technology allows using multiple bandwidths belonging to the two radio layers, enhancing the overall system performance. The system also adopts Multiple Input Multiple Output on top of the dual radio layer access. Authors predict application-layer Round-Trip Time with Machine Learning algorithms leveraging radio layer parameters such as received power and signal quality. Binary classification techniques are adopted to predict if Round-Trip Time values are above or below a threshold. The prediction is tested with real data collected in two measurement campaigns. Results show that Random Forest and Decision Tree Classifiers are the best algorithms with a precision score of respectively 0.84 and 0.92 in both measurement setups. They also evidence the radio- and physical-layer information having more importance for predicting application-layer RTT.