Prediction of RTT Through Radio-Layer Parameters in 4G/5G Dual-Connectivity Mobile Networks

S. Zinno, Antonia Affinito, N. Pasquino, G. Ventre, A. Botta
{"title":"Prediction of RTT Through Radio-Layer Parameters in 4G/5G Dual-Connectivity Mobile Networks","authors":"S. Zinno, Antonia Affinito, N. Pasquino, G. Ventre, A. Botta","doi":"10.1109/ISCC58397.2023.10218091","DOIUrl":null,"url":null,"abstract":"With E-UTRA-NR Dual Connectivity, terminals can connect to 4G Long-Term Evolution and 5G New Radio networks at the same time. This technology allows using multiple bandwidths belonging to the two radio layers, enhancing the overall system performance. The system also adopts Multiple Input Multiple Output on top of the dual radio layer access. Authors predict application-layer Round-Trip Time with Machine Learning algorithms leveraging radio layer parameters such as received power and signal quality. Binary classification techniques are adopted to predict if Round-Trip Time values are above or below a threshold. The prediction is tested with real data collected in two measurement campaigns. Results show that Random Forest and Decision Tree Classifiers are the best algorithms with a precision score of respectively 0.84 and 0.92 in both measurement setups. They also evidence the radio- and physical-layer information having more importance for predicting application-layer RTT.","PeriodicalId":265337,"journal":{"name":"2023 IEEE Symposium on Computers and Communications (ISCC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE Symposium on Computers and Communications (ISCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCC58397.2023.10218091","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

With E-UTRA-NR Dual Connectivity, terminals can connect to 4G Long-Term Evolution and 5G New Radio networks at the same time. This technology allows using multiple bandwidths belonging to the two radio layers, enhancing the overall system performance. The system also adopts Multiple Input Multiple Output on top of the dual radio layer access. Authors predict application-layer Round-Trip Time with Machine Learning algorithms leveraging radio layer parameters such as received power and signal quality. Binary classification techniques are adopted to predict if Round-Trip Time values are above or below a threshold. The prediction is tested with real data collected in two measurement campaigns. Results show that Random Forest and Decision Tree Classifiers are the best algorithms with a precision score of respectively 0.84 and 0.92 in both measurement setups. They also evidence the radio- and physical-layer information having more importance for predicting application-layer RTT.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于无线层参数的4G/5G双连接移动网络RTT预测
通过E-UTRA-NR Dual Connectivity,终端可以同时连接4G Long-Term Evolution和5G New Radio网络。该技术允许使用属于两个无线电层的多个带宽,从而提高了系统的整体性能。该系统在双射频层接入的基础上还采用了多输入多输出。作者通过利用无线电层参数(如接收功率和信号质量)的机器学习算法预测应用层往返时间。采用二元分类技术来预测往返时间值是否高于或低于阈值。该预测是用在两个测量活动中收集的真实数据进行测试的。结果表明,随机森林和决策树分类器在两种测量设置下的精度分别为0.84和0.92,是最好的算法。他们还证明了无线电层和物理层信息对预测应用层RTT更重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
(POSTER) Advanced LTCC-Integrated Technologies for mmWave 5G/Satellite Communication Antennas Multiple Information Extraction and Interaction for Emotion Recognition in Multi-Party Conversation A GRASP-Based Algorithm for Virtual Network Embedding Designing Healthcare Relational Agents: A Conceptual Framework with User-Centered Design Guidelines Analysis of One-Bit DAC for RIS-Assisted MU Massive MIMO Systems with Efficient Autoencoder Based Deep Learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1