ACE: abstracting, characterizing and exploiting peaks and valleys in datacenter power consumption

Di Wang, Chuangang Ren, Sriram Govindan, A. Sivasubramaniam, B. Urgaonkar, A. Kansal, Kushagra Vaid
{"title":"ACE: abstracting, characterizing and exploiting peaks and valleys in datacenter power consumption","authors":"Di Wang, Chuangang Ren, Sriram Govindan, A. Sivasubramaniam, B. Urgaonkar, A. Kansal, Kushagra Vaid","doi":"10.1145/2465529.2465536","DOIUrl":null,"url":null,"abstract":"Peak power management of datacenters has tremendous cost implications. While numerous mechanisms have been proposed to cap power consumption, real datacenter power consumption data is scarce. To address this gap, we collect power demands at multiple spatial and fine-grained temporal resolutions from the load of geo-distributed datacenters of Microsoft over 6 months. We conduct aggregate analysis of this data, to study its statistical properties. With workload characterization a key ingredient for systems design and evaluation, we note the importance of better abstractions for capturing power demands, in the form of peaks and valleys. We identify and characterize attributes for peaks and valleys, and important correlations across these attributes that can influence the choice and effectiveness of different power capping techniques. With the wide scope of exploitability of such characteristics for power provisioning and optimizations, we illustrate its benefits with two specific case studies.","PeriodicalId":306456,"journal":{"name":"Measurement and Modeling of Computer Systems","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Measurement and Modeling of Computer Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2465529.2465536","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

Peak power management of datacenters has tremendous cost implications. While numerous mechanisms have been proposed to cap power consumption, real datacenter power consumption data is scarce. To address this gap, we collect power demands at multiple spatial and fine-grained temporal resolutions from the load of geo-distributed datacenters of Microsoft over 6 months. We conduct aggregate analysis of this data, to study its statistical properties. With workload characterization a key ingredient for systems design and evaluation, we note the importance of better abstractions for capturing power demands, in the form of peaks and valleys. We identify and characterize attributes for peaks and valleys, and important correlations across these attributes that can influence the choice and effectiveness of different power capping techniques. With the wide scope of exploitability of such characteristics for power provisioning and optimizations, we illustrate its benefits with two specific case studies.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
ACE:抽象、描述和利用数据中心功耗的高峰和低谷
数据中心的峰值电源管理具有巨大的成本影响。虽然已经提出了许多机制来限制功耗,但实际的数据中心功耗数据很少。为了解决这一差距,我们从微软地理分布式数据中心的负载中收集了超过6个月的多个空间和细粒度时间分辨率的电力需求。我们对这些数据进行汇总分析,以研究其统计特性。由于工作负载表征是系统设计和评估的关键因素,我们注意到以峰值和低谷的形式捕获功率需求的更好抽象的重要性。我们确定并描述了峰值和低谷的属性,以及这些属性之间的重要相关性,这些属性可以影响不同功率封顶技术的选择和有效性。由于这些特性可以广泛地用于电力供应和优化,我们通过两个具体的案例研究来说明它的好处。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Queueing delays in buffered multistage interconnection networks Data dissemination performance in large-scale sensor networks Index policies for a multi-class queue with convex holding cost and abandonments Neighbor-cell assisted error correction for MLC NAND flash memories Collecting, organizing, and sharing pins in pinterest: interest-driven or social-driven?
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1