A fuzzy bi-clustering approach to correlate web users and pages

Vassiliki A. Koutsonikola, A. Vakali
{"title":"A fuzzy bi-clustering approach to correlate web users and pages","authors":"Vassiliki A. Koutsonikola, A. Vakali","doi":"10.1504/IJKWI.2009.027923","DOIUrl":null,"url":null,"abstract":"With the rapid development of information technology, the significance of clustering in the process of delivering information to users is becoming more eminent. Especially in the web information space, clustering analysis can prove particularly beneficial for a variety of applications such as web personalisation and profiling, caching and prefetching and content delivery networks. In this paper, we propose a bi-clustering approach, which identifies groups of related web users and pages. The proposed approach is a three-step process that relies on the principles of spectral clustering analysis and provides a fuzzy relation scheme for the revealed users' and pages' clusters. Experiments have been conducted on both synthetic and real datasets to prove the proposed method's efficiency and reveal hidden knowledge.","PeriodicalId":113936,"journal":{"name":"Int. J. Knowl. Web Intell.","volume":"59 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Knowl. Web Intell.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJKWI.2009.027923","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 26

Abstract

With the rapid development of information technology, the significance of clustering in the process of delivering information to users is becoming more eminent. Especially in the web information space, clustering analysis can prove particularly beneficial for a variety of applications such as web personalisation and profiling, caching and prefetching and content delivery networks. In this paper, we propose a bi-clustering approach, which identifies groups of related web users and pages. The proposed approach is a three-step process that relies on the principles of spectral clustering analysis and provides a fuzzy relation scheme for the revealed users' and pages' clusters. Experiments have been conducted on both synthetic and real datasets to prove the proposed method's efficiency and reveal hidden knowledge.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种模糊双聚类方法来关联web用户和页面
随着信息技术的飞速发展,集群在向用户传递信息过程中的重要性日益凸显。特别是在web信息空间,聚类分析可以证明对各种应用程序特别有益,例如web个性化和分析,缓存和预取以及内容交付网络。在本文中,我们提出了一种双聚类方法,该方法可以识别相关的web用户和页面组。该方法基于谱聚类分析原理,分三步进行,并为揭示的用户和页面聚类提供模糊关系方案。在合成数据集和真实数据集上进行了实验,证明了该方法的有效性,并揭示了隐藏的知识。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
MOSSA: a morpho-semantic knowledge extraction system for Arabic information retrieval Learning by redesigning programs: support system for understanding design policy in software design patterns Representations of psychological function based on ontology for collaborative design of peer support services for diabetic patients Learning how to learn with knowledge building process through experiences in new employee training: a case study on learner-mentor interaction model SKACICM a method for development of knowledge management and innovation system e-KnowSphere
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1