Panel Time Series

Ron P. Smith, Ana‐Maria Fuertes
{"title":"Panel Time Series","authors":"Ron P. Smith, Ana‐Maria Fuertes","doi":"10.1002/9781119504641.ch8","DOIUrl":null,"url":null,"abstract":"Traditionally economic panels had large number of cross-section units and relatively few time periods and econometric methods were developed for such ‘large N small T ’data. More recently panels with observations for a large numbers of time periods have become available on cross-section units like \u0085rms, industries, regions or countries. These notes explore the econometric methods developed for such ‘large N large T’ data. Such data allow more explicit treatment of (a) heterogeneity across units (b) dynamics, including the treatment of unit roots and cointegration and (c) cross-section dependence arising from spatial interactions or unobserved common factors.","PeriodicalId":273652,"journal":{"name":"Panel Data Econometrics with R","volume":"246 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Panel Data Econometrics with R","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/9781119504641.ch8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

Abstract

Traditionally economic panels had large number of cross-section units and relatively few time periods and econometric methods were developed for such ‘large N small T ’data. More recently panels with observations for a large numbers of time periods have become available on cross-section units like …rms, industries, regions or countries. These notes explore the econometric methods developed for such ‘large N large T’ data. Such data allow more explicit treatment of (a) heterogeneity across units (b) dynamics, including the treatment of unit roots and cointegration and (c) cross-section dependence arising from spatial interactions or unobserved common factors.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
面板时间序列
传统的经济面板有大量的横截面单位和相对较少的时间段,并且为这种“大N小T”数据开发了计量经济学方法。最近,在诸如…均方根、工业、区域或国家等横截面单位上出现了具有大量时间段观测结果的小组。这些笔记探讨了为这种“大N大T”数据开发的计量经济学方法。这些数据允许更明确地处理(a)跨单位的异质性(b)动力学,包括单位根和协整的处理以及(c)由空间相互作用或未观察到的共同因素引起的横截面依赖性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Advanced Error Components Models Tests on Error Component Models Estimation of a Dynamic Model Spatial Panels Count Data and Limited Dependent Variables
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1