Context-Aware Recommendation by Aggregating User Context

Dongmin Shin, Jae-won Lee, Jongheum Yeon, Sang-goo Lee
{"title":"Context-Aware Recommendation by Aggregating User Context","authors":"Dongmin Shin, Jae-won Lee, Jongheum Yeon, Sang-goo Lee","doi":"10.1109/CEC.2009.38","DOIUrl":null,"url":null,"abstract":"Traditional recommendation approaches do not consider the changes of user preferences according to context. As a result, these approaches consider the user’s overall preferences, although the user preferences on items varies according to his/her context. However, in our context-aware approach, we take into account not only user preferences, but also context information. Our approach can be easily adopted for content-based and collaborative filtering based recommendations. To exploit raw context information in recommendation, we abstract the raw context information to a concept level. Moreover, by aggregating the context information, we can improve the quality of recommendation. The results of several experiments show that our method is more precise than the traditional recommendation approaches.","PeriodicalId":384060,"journal":{"name":"2009 IEEE Conference on Commerce and Enterprise Computing","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"59","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE Conference on Commerce and Enterprise Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEC.2009.38","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 59

Abstract

Traditional recommendation approaches do not consider the changes of user preferences according to context. As a result, these approaches consider the user’s overall preferences, although the user preferences on items varies according to his/her context. However, in our context-aware approach, we take into account not only user preferences, but also context information. Our approach can be easily adopted for content-based and collaborative filtering based recommendations. To exploit raw context information in recommendation, we abstract the raw context information to a concept level. Moreover, by aggregating the context information, we can improve the quality of recommendation. The results of several experiments show that our method is more precise than the traditional recommendation approaches.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过聚合用户上下文进行上下文感知推荐
传统的推荐方法没有考虑用户偏好随上下文的变化。因此,这些方法考虑了用户的总体偏好,尽管用户对项目的偏好会根据他/她的上下文而变化。然而,在我们的上下文感知方法中,我们不仅考虑用户偏好,还考虑上下文信息。我们的方法可以很容易地用于基于内容和基于协作过滤的推荐。为了在推荐中利用原始上下文信息,我们将原始上下文信息抽象到概念级别。此外,通过对上下文信息的聚合,可以提高推荐的质量。几个实验结果表明,我们的方法比传统的推荐方法更精确。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Web-Based Process Portals: Powering Business Process Management within Large Organisations Time-BPMN Process Mining of RFID-Based Supply Chains SARI-SQL: Event Query Language for Event Analysis Decision-Support for Optimizing Supply Chain Formation Based on CSET Model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1