Intervention Prediction for Patients with Pressure Injury Using Random Forest

Liuqi Jin, Yan Pan, Jiaoyun Yang, Lin Han, Lin Lv, Miki Raviv, Ning An
{"title":"Intervention Prediction for Patients with Pressure Injury Using Random Forest","authors":"Liuqi Jin, Yan Pan, Jiaoyun Yang, Lin Han, Lin Lv, Miki Raviv, Ning An","doi":"10.1109/ICKG52313.2021.00072","DOIUrl":null,"url":null,"abstract":"Pressure injury (PI) is one of the major causes of short-term death. Early intervention for patients at risk plays an essential role in PI. However, many nurses may ignore risks. This paper aims to establish a model to predict interventions according to the patient's physical signs, which can help nurses develop care plans. We used data from 1,483 patients with 25 characteristics and 17 interventions. We use the Random Forest and Particle Swarm Optimization (PSO) to optimize model parameters. Then we compared it with KNN, SVM, and Decision Tree. The 10-fold cross-validation result showed that the Random Forest has better accuracy than other methods, with an f1 score of 0.84. This finding proved the feasibility of using machine learning to help formulate care plans according to the classification of index prediction results. Our model shows that hemoglobin, Braden PI score, and age are the three most influential risk factors.","PeriodicalId":174126,"journal":{"name":"2021 IEEE International Conference on Big Knowledge (ICBK)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Big Knowledge (ICBK)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICKG52313.2021.00072","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Pressure injury (PI) is one of the major causes of short-term death. Early intervention for patients at risk plays an essential role in PI. However, many nurses may ignore risks. This paper aims to establish a model to predict interventions according to the patient's physical signs, which can help nurses develop care plans. We used data from 1,483 patients with 25 characteristics and 17 interventions. We use the Random Forest and Particle Swarm Optimization (PSO) to optimize model parameters. Then we compared it with KNN, SVM, and Decision Tree. The 10-fold cross-validation result showed that the Random Forest has better accuracy than other methods, with an f1 score of 0.84. This finding proved the feasibility of using machine learning to help formulate care plans according to the classification of index prediction results. Our model shows that hemoglobin, Braden PI score, and age are the three most influential risk factors.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于随机森林的压力性损伤干预预测
压伤(PI)是短期死亡的主要原因之一。高危患者的早期干预在PI中起着至关重要的作用。然而,许多护士可能会忽视风险。本文旨在建立一个模型,根据患者的身体体征预测干预措施,以帮助护士制定护理计划。我们使用了来自1483名患者的数据,这些患者有25个特征和17种干预措施。我们使用随机森林和粒子群优化(PSO)来优化模型参数。然后将其与KNN、SVM和Decision Tree进行比较。10倍交叉验证结果表明Random Forest的准确率优于其他方法,f1得分为0.84。这一发现证明了根据指标预测结果的分类,利用机器学习帮助制定护理计划的可行性。我们的模型显示血红蛋白、Braden PI评分和年龄是三个最具影响的危险因素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Genetic Algorithm for Residual Static Correction A Robust Mathematical Model for Blood Supply Chain Network using Game Theory Divide and Conquer: Targeted Adversary Detection using Proximity and Dependency A divide-and-conquer method for computing preferred extensions of argumentation frameworks An efficient framework for sentence similarity inspired by quantum computing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1