Coefficient estimation of the energy functional area term

Andrey Turkin, A. Sotnikov, Dmitry Fionov, A. Shipatov, Cedric Belloc
{"title":"Coefficient estimation of the energy functional area term","authors":"Andrey Turkin, A. Sotnikov, Dmitry Fionov, A. Shipatov, Cedric Belloc","doi":"10.1109/EICONRUSNW.2015.7102282","DOIUrl":null,"url":null,"abstract":"Many applications of computer vision, such as variation frameworks, operate using level set methods which require some unknown parameters to be chosen before evolution of the level set function. In general, the parameters should be estimated using provided data, however, in some cases, it can be defined empirically. The present work focuses on estimation of the coefficient in the energy functional that computes a weighted area of the region inside the contour and speeds up its motion toward the object boundaries. The paper discusses a new approach for the coefficient estimation comprised the image features such as mean and variance values of pixel intensities and image gradients. The advantages of the precise estimation of this parameter are following: (1) the convergence of the evaluation process is getting faster if the value of the coefficient in the weighted area term is higher that, therefore, may speed up the curve evolution; (2) the contour may pass through the object boundary in some lower contrast images if the coefficient is too large, thus the calculation of the coefficient may avoid this effect called boundary leakage. The provided result shows that the suggested approach on parameter estimation can increase the speed and quality of the convergence driving the motion of the zero level curve in images with different contrast.","PeriodicalId":268759,"journal":{"name":"2015 IEEE NW Russia Young Researchers in Electrical and Electronic Engineering Conference (EIConRusNW)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2015-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE NW Russia Young Researchers in Electrical and Electronic Engineering Conference (EIConRusNW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EICONRUSNW.2015.7102282","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Many applications of computer vision, such as variation frameworks, operate using level set methods which require some unknown parameters to be chosen before evolution of the level set function. In general, the parameters should be estimated using provided data, however, in some cases, it can be defined empirically. The present work focuses on estimation of the coefficient in the energy functional that computes a weighted area of the region inside the contour and speeds up its motion toward the object boundaries. The paper discusses a new approach for the coefficient estimation comprised the image features such as mean and variance values of pixel intensities and image gradients. The advantages of the precise estimation of this parameter are following: (1) the convergence of the evaluation process is getting faster if the value of the coefficient in the weighted area term is higher that, therefore, may speed up the curve evolution; (2) the contour may pass through the object boundary in some lower contrast images if the coefficient is too large, thus the calculation of the coefficient may avoid this effect called boundary leakage. The provided result shows that the suggested approach on parameter estimation can increase the speed and quality of the convergence driving the motion of the zero level curve in images with different contrast.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
能量泛函面积项的系数估计
计算机视觉的许多应用,如变异框架,使用水平集方法来操作,这需要在水平集函数进化之前选择一些未知参数。一般来说,应使用所提供的数据估计参数,但在某些情况下,可以根据经验定义参数。目前的工作重点是估计能量函数中的系数,该函数计算轮廓内区域的加权面积并加速其向目标边界的运动。本文讨论了一种结合像元强度均值、方差值和图像梯度等图像特征进行系数估计的新方法。该参数精确估计的优点是:(1)如果加权面积项中的系数值越大,则评价过程的收敛速度越快,从而可能加快曲线的演化速度;(2)在一些对比度较低的图像中,如果系数过大,轮廓可能会穿过物体边界,因此计算系数可以避免这种被称为边界泄漏的影响。实验结果表明,所提出的参数估计方法可以提高不同对比度图像中驱动零水平曲线运动的收敛速度和收敛质量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
AlGaN photodiodes for UVC, UVB and UVA spectral ranges Evaluation of statistical properties of a modified Bloom filter for heterogeneous GPGPU-systems Parallelization of test for assessing pseudorandom number generators using CUDA technology Digital filter bank implementation and signal classification on the basis of CUDA Simulation of dynamical systems based on parallel numerical integration methods
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1