Inter-Quantile Ranges and Volatility of Financial Data

T. Dimpfl, D. Baur
{"title":"Inter-Quantile Ranges and Volatility of Financial Data","authors":"T. Dimpfl, D. Baur","doi":"10.2139/ssrn.2835951","DOIUrl":null,"url":null,"abstract":"We propose to estimate the variance of a time series of financial returns through a quantile autoregressive model (QAR) and demonstrate that the return QAR model contains all information that is commonly captured in two separate equations for the mean and variance of a GARCH-type model. In particular, QAR allows to characterize the entire distribution of returns conditional on a positive or negative return of any given size. We show theoretically and in an empirical application that the inter-quantile range spanned by conditional quantile estimates identifies the asymmetric response of volatility to lagged returns, resulting in broader conditional densities for negative returns than for positive returns. Finally, we estimate the conditional variance based on the estimated conditional density and illustrate its accuracy with an evaluation of Value-at-Risk and variance forecasts.","PeriodicalId":106740,"journal":{"name":"ERN: Other Econometrics: Econometric Model Construction","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Other Econometrics: Econometric Model Construction","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.2835951","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

We propose to estimate the variance of a time series of financial returns through a quantile autoregressive model (QAR) and demonstrate that the return QAR model contains all information that is commonly captured in two separate equations for the mean and variance of a GARCH-type model. In particular, QAR allows to characterize the entire distribution of returns conditional on a positive or negative return of any given size. We show theoretically and in an empirical application that the inter-quantile range spanned by conditional quantile estimates identifies the asymmetric response of volatility to lagged returns, resulting in broader conditional densities for negative returns than for positive returns. Finally, we estimate the conditional variance based on the estimated conditional density and illustrate its accuracy with an evaluation of Value-at-Risk and variance forecasts.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
金融数据的分位数区间与波动性
我们建议通过分位数自回归模型(QAR)估计金融回报时间序列的方差,并证明回报QAR模型包含了garch类型模型的均值和方差两个独立方程中通常捕获的所有信息。特别是,QAR允许描述以任意给定大小的正或负回报为条件的整个回报分布。我们在理论和经验应用中表明,条件分位数估计跨越的分位数间范围确定了波动性对滞后回报的不对称响应,导致负回报的条件密度比正回报的条件密度更大。最后,我们根据估计的条件密度估计条件方差,并通过评估风险值和方差预测来说明其准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Rank Determination in Tensor Factor Model A Toolkit for Robust Risk Assessment Using F-Divergences One-factor Hull-White Model Calibration for CVA - Part I: Instrument Selection With a Kink High-Dimensional Granger Causality Tests with an Application to VIX and News Selective Linear Segmentation For Detecting Relevant Parameter Changes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1