Two-View Geometry Scoring Without Correspondences

Axel Barroso-Laguna, Eric Brachmann, V. Prisacariu, G. Brostow, Daniyar Turmukhambetov
{"title":"Two-View Geometry Scoring Without Correspondences","authors":"Axel Barroso-Laguna, Eric Brachmann, V. Prisacariu, G. Brostow, Daniyar Turmukhambetov","doi":"10.1109/CVPR52729.2023.00867","DOIUrl":null,"url":null,"abstract":"Camera pose estimation for two-view geometry traditionally relies on RANSAC. Normally, a multitude of image correspondences leads to a pool of proposed hypotheses, which are then scored to find a winning model. The inlier count is generally regarded as a reliable indicator of “consensus”. We examine this scoring heuristic, and find that it favors disappointing models under certain circumstances. As a remedy, we propose the Fundamental Scoring Network (FSNet), which infers a score for a pair of overlap-ping images and any proposed fundamental matrix. It does not rely on sparse correspondences, but rather embodies a two-view geometry model through an epipolar attention mechanism that predicts the pose error of the two images. FSNet can be incorporated into traditional RANSAC loops. We evaluate FSNet onfundamental and essential matrix estimation on indoor and outdoor datasets, and establish that FSNet can successfully identify good poses for pairs of images with few or unreliable correspondences. Besides, we show that naively combining FSNet with MAGSAC++ scoring approach achieves state of the art results.","PeriodicalId":376416,"journal":{"name":"2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)","volume":"76 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR52729.2023.00867","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Camera pose estimation for two-view geometry traditionally relies on RANSAC. Normally, a multitude of image correspondences leads to a pool of proposed hypotheses, which are then scored to find a winning model. The inlier count is generally regarded as a reliable indicator of “consensus”. We examine this scoring heuristic, and find that it favors disappointing models under certain circumstances. As a remedy, we propose the Fundamental Scoring Network (FSNet), which infers a score for a pair of overlap-ping images and any proposed fundamental matrix. It does not rely on sparse correspondences, but rather embodies a two-view geometry model through an epipolar attention mechanism that predicts the pose error of the two images. FSNet can be incorporated into traditional RANSAC loops. We evaluate FSNet onfundamental and essential matrix estimation on indoor and outdoor datasets, and establish that FSNet can successfully identify good poses for pairs of images with few or unreliable correspondences. Besides, we show that naively combining FSNet with MAGSAC++ scoring approach achieves state of the art results.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
无对应的双视图几何评分
传统上,双视图几何的相机姿态估计依赖于RANSAC。通常情况下,大量的图像对应会导致提出的假设池,然后对这些假设进行评分以找到获胜的模型。初步统计通常被认为是“共识”的可靠指标。我们研究了这种评分启发式,发现它在某些情况下倾向于令人失望的模型。作为补救措施,我们提出了基本评分网络(FSNet),它为一对重叠图像和任何提出的基本矩阵推断一个分数。它不依赖于稀疏对应,而是通过极外注意机制实现两视图几何模型,预测两幅图像的姿态误差。FSNet可以并入传统的RANSAC环路中。我们在室内和室外数据集上对FSNet进行了基本和基本矩阵估计,并确定FSNet可以成功地识别出具有少量或不可靠对应的图像对的良好姿态。此外,我们还证明了将FSNet与MAGSAC++评分方法天真地结合在一起可以获得最先进的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
L-CoIns: Language-based Colorization With Instance Awareness Neural Texture Synthesis with Guided Correspondence LOGO: A Long-Form Video Dataset for Group Action Quality Assessment ERM-KTP: Knowledge-Level Machine Unlearning via Knowledge Transfer Target-referenced Reactive Grasping for Dynamic Objects
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1