Abstract B079: Evaluation of tools for predicting mutated tumor antigens from exome and RNA sequencing

Julia Kodysh, J. Finnigan, A. Rubinsteyn
{"title":"Abstract B079: Evaluation of tools for predicting mutated tumor antigens from exome and RNA sequencing","authors":"Julia Kodysh, J. Finnigan, A. Rubinsteyn","doi":"10.1158/2326-6074.CRICIMTEATIAACR18-B079","DOIUrl":null,"url":null,"abstract":"Neoantigen vaccination is an emerging modality of cancer immunotherapy with many ongoing trials. One central question of neoantigen vaccination is the method for selecting which mutated tumor-specific antigens to include in a patient’s vaccine. Many in-silico pipelines for neoantigen selection have been published in the past few years, but no comprehensive evaluation has compared them directly on the same tumor/normal sequencing data. We evaluate several publicly available commonly used neoantigen pipelines (pVACtools [1], MuPeXI [2], TIminer [3], OpenVax [4]) on both murine and human cancer samples. Our evaluation highlights the salient differences between these pipelines and shows the divergent results they achieve. References: 1. Kiwala S, Hundal J, …, Griffith M. pVACtools: Computational selection and visualization of neoantigens for personalized cancer vaccine design. Cancer Genetics 2018. 2. Bjerregaard A-M, Nielsen M, ..., Eklund AC. MuPeXI: Prediction of neo-epitopes from tumor sequencing data. Cancer Immunology Immunotherapy 2018. 3. Tappeiner E, Finotello F, ..., Trajanoski Z. TIminer: NGS data mining pipeline for cancer immunology and immunotherapy. Bioinformatics 2017. 4. Rubinsteyn A, Kodysh J, …, Hammerbacher J. Computational pipeline for the PGV-001 Neoantigen Vaccine Trial. Frontiers in Immunology 2018. Citation Format: Julia Kodysh, John P. Finnigan, Alex Rubinsteyn. Evaluation of tools for predicting mutated tumor antigens from exome and RNA sequencing [abstract]. In: Proceedings of the Fourth CRI-CIMT-EATI-AACR International Cancer Immunotherapy Conference: Translating Science into Survival; Sept 30-Oct 3, 2018; New York, NY. Philadelphia (PA): AACR; Cancer Immunol Res 2019;7(2 Suppl):Abstract nr B079.","PeriodicalId":433681,"journal":{"name":"Mutational Analysis and Predicting Response to Immunotherapy","volume":"13 6","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mutational Analysis and Predicting Response to Immunotherapy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1158/2326-6074.CRICIMTEATIAACR18-B079","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Neoantigen vaccination is an emerging modality of cancer immunotherapy with many ongoing trials. One central question of neoantigen vaccination is the method for selecting which mutated tumor-specific antigens to include in a patient’s vaccine. Many in-silico pipelines for neoantigen selection have been published in the past few years, but no comprehensive evaluation has compared them directly on the same tumor/normal sequencing data. We evaluate several publicly available commonly used neoantigen pipelines (pVACtools [1], MuPeXI [2], TIminer [3], OpenVax [4]) on both murine and human cancer samples. Our evaluation highlights the salient differences between these pipelines and shows the divergent results they achieve. References: 1. Kiwala S, Hundal J, …, Griffith M. pVACtools: Computational selection and visualization of neoantigens for personalized cancer vaccine design. Cancer Genetics 2018. 2. Bjerregaard A-M, Nielsen M, ..., Eklund AC. MuPeXI: Prediction of neo-epitopes from tumor sequencing data. Cancer Immunology Immunotherapy 2018. 3. Tappeiner E, Finotello F, ..., Trajanoski Z. TIminer: NGS data mining pipeline for cancer immunology and immunotherapy. Bioinformatics 2017. 4. Rubinsteyn A, Kodysh J, …, Hammerbacher J. Computational pipeline for the PGV-001 Neoantigen Vaccine Trial. Frontiers in Immunology 2018. Citation Format: Julia Kodysh, John P. Finnigan, Alex Rubinsteyn. Evaluation of tools for predicting mutated tumor antigens from exome and RNA sequencing [abstract]. In: Proceedings of the Fourth CRI-CIMT-EATI-AACR International Cancer Immunotherapy Conference: Translating Science into Survival; Sept 30-Oct 3, 2018; New York, NY. Philadelphia (PA): AACR; Cancer Immunol Res 2019;7(2 Suppl):Abstract nr B079.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
B079:外显子组和RNA测序预测肿瘤抗原突变的工具评价
新抗原疫苗接种是一种新兴的癌症免疫治疗方式,有许多正在进行的试验。新抗原疫苗接种的一个中心问题是选择将哪些突变的肿瘤特异性抗原包括在患者疫苗中的方法。在过去的几年中,已经发表了许多用于新抗原选择的计算机管道,但没有对它们在相同的肿瘤/正常测序数据上进行直接比较的综合评估。我们评估了几种公开可用的常用新抗原管道(pVACtools [1], MuPeXI [2], TIminer [3], OpenVax[4])对小鼠和人类癌症样本的影响。我们的评估强调了这些管道之间的显著差异,并显示了它们实现的不同结果。引用:1。张建军,张建军,张建军,等。肿瘤疫苗抗原筛选方法的研究进展。癌症遗传学2018。2. bjerregard A-M, Nielsen M,…MuPeXI:基于肿瘤测序数据的新表位预测。癌症免疫学-免疫疗法2018。3.Tappeiner E, Finotello F,…(1)基于NGS数据挖掘的肿瘤免疫与免疫治疗研究。2017年生物信息学。4. 李建军,李建军,李建军,等。ppv001新抗原疫苗的临床研究进展。免疫学前沿2018。引用格式:Julia kodhh, John P. Finnigan, Alex rubinstein。外显子组和RNA测序预测肿瘤抗原突变的工具评价[摘要]。第四届CRI-CIMT-EATI-AACR国际癌症免疫治疗会议:将科学转化为生存;2018年9月30日至10月3日;纽约,纽约。费城(PA): AACR;癌症免疫学杂志,2019;7(2增刊):摘要nr B079。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Abstract B092: Tumor infiltrating T-cells from renal cell carcinoma patients recognize neoantigens derived from point and frameshift mutations Abstract B084: Methylation landscape of tumors associated with antitumor immune signature Abstract B074: A recall antigen-based potency assay for immunomodulatory biologics that could discriminate responders from nonresponders Abstract B089: Application of precision cancer immunotherapy design tools to bladder cancer: Non-self-like neoepitopes as a prognostic biomarker Abstract B083: Defective transcription elongation in a subset of cancers confers immunotherapy resistance
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1