Fundamental neural structures, operations, and asymptotic performance criteria in decentralized binary hypothesis testing

P. Papantoni-Kazakos, D. Kazakos
{"title":"Fundamental neural structures, operations, and asymptotic performance criteria in decentralized binary hypothesis testing","authors":"P. Papantoni-Kazakos, D. Kazakos","doi":"10.1109/ICNN.1991.163375","DOIUrl":null,"url":null,"abstract":"Fundamental neural network structures in decentralized hypothesis testing are considered. For binary hypothesis testing, the basic neural operations are established, and the Neyman-Pearson criterion is utilized due to information theoretic arguments. Then, two fundamental neural structures are considered, and analyzed and compared in terms of asymptotic performance measures. In particular, the asymptotic relative efficiency performance measure is used to establish performance characteristics and tradeoffs in the two structures, for both parametrically and nonparametrically defined hypotheses. In the latter case, robust neural network structures are considered, and their superiority to parametric network structures is argued.<<ETX>>","PeriodicalId":296300,"journal":{"name":"[1991 Proceedings] IEEE Conference on Neural Networks for Ocean Engineering","volume":"115 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1991-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"[1991 Proceedings] IEEE Conference on Neural Networks for Ocean Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNN.1991.163375","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

Fundamental neural network structures in decentralized hypothesis testing are considered. For binary hypothesis testing, the basic neural operations are established, and the Neyman-Pearson criterion is utilized due to information theoretic arguments. Then, two fundamental neural structures are considered, and analyzed and compared in terms of asymptotic performance measures. In particular, the asymptotic relative efficiency performance measure is used to establish performance characteristics and tradeoffs in the two structures, for both parametrically and nonparametrically defined hypotheses. In the latter case, robust neural network structures are considered, and their superiority to parametric network structures is argued.<>
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
分散二元假设检验中的基本神经结构、操作和渐近性能准则
研究了分散假设检验中的基本神经网络结构。对于二元假设检验,建立了基本的神经运算,并基于信息理论的考虑,采用了Neyman-Pearson准则。然后,考虑了两种基本的神经网络结构,并根据渐近性能度量进行了分析和比较。特别是,对于参数和非参数定义的假设,使用渐近相对效率性能度量来建立两种结构的性能特征和权衡。在后一种情况下,考虑了鲁棒神经网络结构,并论证了其相对于参数网络结构的优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Evaluation of neural network and conventional techniques for sonar signal discrimination The potential of a neural network based sonar system in classifying fish Neural network for underwater target detection Design of an intelligent control system for remotely operated vehicles All neural network sonar discrimination system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1