Generative Adversarial Networks Based Approach for Artificial Face Dataset Generation in Acne Disease Cases

Hazem Zein, S. Chantaf, Rola El-Saleh, A. Nait-Ali
{"title":"Generative Adversarial Networks Based Approach for Artificial Face Dataset Generation in Acne Disease Cases","authors":"Hazem Zein, S. Chantaf, Rola El-Saleh, A. Nait-Ali","doi":"10.1109/BioSMART54244.2021.9677572","DOIUrl":null,"url":null,"abstract":"Deep-Learning based approaches in dermatology face a significant problem regarding the availability of free open datasets. Recently, Generative Adversarial Networks (GANs) were successfully employed to generate artificial images through a combination of two models: Generator and Discriminator. In this work, we propose using StyleGAN2 to generate realistic artificial faces presenting acne diseases. The model uses a collection of authentic face images gathered from multiple sources regardless of the acquisition conditions such as resolution, pose, Etc. Results show that the model can produce an unlimited number of artificial faces of acne diseases. The biomedical community can take advantage of such a dataset to evaluate the performance of some specific algorithms.","PeriodicalId":286026,"journal":{"name":"2021 4th International Conference on Bio-Engineering for Smart Technologies (BioSMART)","volume":"127 27","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 4th International Conference on Bio-Engineering for Smart Technologies (BioSMART)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BioSMART54244.2021.9677572","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Deep-Learning based approaches in dermatology face a significant problem regarding the availability of free open datasets. Recently, Generative Adversarial Networks (GANs) were successfully employed to generate artificial images through a combination of two models: Generator and Discriminator. In this work, we propose using StyleGAN2 to generate realistic artificial faces presenting acne diseases. The model uses a collection of authentic face images gathered from multiple sources regardless of the acquisition conditions such as resolution, pose, Etc. Results show that the model can produce an unlimited number of artificial faces of acne diseases. The biomedical community can take advantage of such a dataset to evaluate the performance of some specific algorithms.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于生成对抗网络的痤疮病例人工人脸数据集生成方法
皮肤病学中基于深度学习的方法面临着一个关于免费开放数据集可用性的重大问题。近年来,生成式对抗网络(GANs)通过生成器和判别器两种模型的结合,成功地用于生成人工图像。在这项工作中,我们建议使用StyleGAN2来生成逼真的痤疮疾病的人工面孔。该模型使用从多个来源收集的真实人脸图像集合,而不考虑分辨率、姿态等获取条件。结果表明,该模型可以产生无限数量的痤疮疾病的人工面孔。生物医学界可以利用这样的数据集来评估某些特定算法的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An Efficient Electrode Ranking Method for Single Trial Detection of EEG Error-Related Potentials Efficacy of AR Haptic Simulation for Nursing Student Education In silico study of sensitivity of polymeric prism-based surface plasmon resonance sensors based on graphene and molybdenum disulfide layers A Social Robot with Conversational Capabilities for Visitor Reception: Design and Framework MICSurv: Medical Image Clustering for Survival risk group identification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1