Multilayer artificial neural networks for real time power system state estimation

H. Mosbah, M. El-Hawary
{"title":"Multilayer artificial neural networks for real time power system state estimation","authors":"H. Mosbah, M. El-Hawary","doi":"10.1109/EPEC.2015.7379974","DOIUrl":null,"url":null,"abstract":"State estimation is a vital apparatus in observing the power electric grids. As the measure of the electric power grid keeps on growing, a state estimator must be all the more computationally effective and robust. This paper presents a real time state estimation using a new methodology of multilayer neural networks exhibited in composite topologies, hybrid Cascade and hybrid Parallel topologies in order to improve the estimation performance. The intent is to address the conduct of various composite topologies to contrast the robust performance indices by the maximum relative error, mean absolute percentage error (MAPE), root mean square error, and mean square error (MSE). The performance of distinctive topologies are contrasted with distinguish the best connection structural. The estimation performance of the proposed method is evaluated using real time data from the American Electric Power System in the Midwestern US which is published by the official website of University of Washington.","PeriodicalId":231255,"journal":{"name":"2015 IEEE Electrical Power and Energy Conference (EPEC)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE Electrical Power and Energy Conference (EPEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EPEC.2015.7379974","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

State estimation is a vital apparatus in observing the power electric grids. As the measure of the electric power grid keeps on growing, a state estimator must be all the more computationally effective and robust. This paper presents a real time state estimation using a new methodology of multilayer neural networks exhibited in composite topologies, hybrid Cascade and hybrid Parallel topologies in order to improve the estimation performance. The intent is to address the conduct of various composite topologies to contrast the robust performance indices by the maximum relative error, mean absolute percentage error (MAPE), root mean square error, and mean square error (MSE). The performance of distinctive topologies are contrasted with distinguish the best connection structural. The estimation performance of the proposed method is evaluated using real time data from the American Electric Power System in the Midwestern US which is published by the official website of University of Washington.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于多层人工神经网络的电力系统状态实时估计
状态估计是观测电网的重要手段。随着电网测度的不断增长,对状态估计器的计算效率和鲁棒性提出了更高的要求。本文提出了一种基于复合拓扑、混合级联拓扑和混合并行拓扑的多层神经网络实时状态估计方法,以提高估计性能。目的是解决各种复合拓扑的行为,通过最大相对误差、平均绝对百分比误差(MAPE)、均方根误差和均方误差(MSE)来比较鲁棒性能指标。对比了不同拓扑结构的性能,确定了最佳连接结构。利用华盛顿大学官方网站公布的美国中西部电力系统实时数据对所提出方法的估计性能进行了评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Comparison between numerical and analytical methods of AC resistance evaluation for Medium Frequency Transformers: Validation on a prototype Improved control strategy of full-bridge modular multilevel converter Appliance scheduling optimization in smart home networks comprising of smart appliances and a photovoltaic panel Dynamic Reactive Power Compensation for voltage support using Static VAR Compensator (SVC) In Saudi Arabia Observability analysis of power systems in the presence of hybrid measurements
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1