Cellular neural networks as a model of associative memories

S. Tan, J. Hao, J. Vandewalle
{"title":"Cellular neural networks as a model of associative memories","authors":"S. Tan, J. Hao, J. Vandewalle","doi":"10.1109/CNNA.1990.207504","DOIUrl":null,"url":null,"abstract":"Concerns the design of cellular neural networks intended to function as associative memories. The authors consider a discrete-time version of cellular neural nets featuring simple linear thresholding neurons and the synchronous state-updating rule. The Hebbian rule is adopted as the memory design rule. Important issues, such as the memory capacity and the size of the attracting basin, are discussed. The validity of the method is illustrated by a simple example.<<ETX>>","PeriodicalId":142909,"journal":{"name":"IEEE International Workshop on Cellular Neural Networks and their Applications","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1990-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE International Workshop on Cellular Neural Networks and their Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CNNA.1990.207504","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 24

Abstract

Concerns the design of cellular neural networks intended to function as associative memories. The authors consider a discrete-time version of cellular neural nets featuring simple linear thresholding neurons and the synchronous state-updating rule. The Hebbian rule is adopted as the memory design rule. Important issues, such as the memory capacity and the size of the attracting basin, are discussed. The validity of the method is illustrated by a simple example.<>
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
细胞神经网络作为联想记忆的模型
涉及细胞神经网络的设计,旨在作为联想记忆的功能。作者考虑了一个离散时间版本的细胞神经网络,它具有简单的线性阈值神经元和同步状态更新规则。采用Hebbian规则作为内存设计规则。重要的问题,如记忆容量和吸引池的大小,进行了讨论。通过一个简单的算例说明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Cellular neural network design using a learning algorithm Accurate design of analog CNN in CMOS digital technologies A possible transformation of the fully connected neural nets into partially connected networks The non-idealities of the IC-realization and the stability of CNN-networks Realization of CNNs by optical parallel processing with spatial light valves
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1