Floating Point and Fixed Point 32-bits Quantizers for Quantization of Weights of Neural Networks

Z. Perić, Milan S. Savic, M. Dincic, N. Vučić, D. Djosic, S. Milosavljevic
{"title":"Floating Point and Fixed Point 32-bits Quantizers for Quantization of Weights of Neural Networks","authors":"Z. Perić, Milan S. Savic, M. Dincic, N. Vučić, D. Djosic, S. Milosavljevic","doi":"10.1109/ATEE52255.2021.9425265","DOIUrl":null,"url":null,"abstract":"Floating Point 32-bits (FP32) representation format is proposed by IEEE Standard 754, being widely used in neural networks (NN), signal processing and numerical computation. Also, Fixed Point 32-bits format is widely used for data representation. This paper describes those standard 32-bits formats (Fixed Point 32 and FP32) as quantization schemes, defining quantizers based on them and providing in this way references for comparison of other quantization schemes used in neural networks. Quantization of data with the Laplacian distribution is considered, in a wide range of variance. Theoretical results are proven by an experiment, applying those quantization schemes on weights of a neural network.","PeriodicalId":359645,"journal":{"name":"2021 12th International Symposium on Advanced Topics in Electrical Engineering (ATEE)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 12th International Symposium on Advanced Topics in Electrical Engineering (ATEE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ATEE52255.2021.9425265","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

Floating Point 32-bits (FP32) representation format is proposed by IEEE Standard 754, being widely used in neural networks (NN), signal processing and numerical computation. Also, Fixed Point 32-bits format is widely used for data representation. This paper describes those standard 32-bits formats (Fixed Point 32 and FP32) as quantization schemes, defining quantizers based on them and providing in this way references for comparison of other quantization schemes used in neural networks. Quantization of data with the Laplacian distribution is considered, in a wide range of variance. Theoretical results are proven by an experiment, applying those quantization schemes on weights of a neural network.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于神经网络权值量化的浮点和定点32位量化器
浮点32位(FP32)表示格式是由IEEE标准754提出的,在神经网络、信号处理和数值计算中得到了广泛的应用。此外,定点32位格式被广泛用于数据表示。本文将这些标准的32位格式(Fixed Point 32和FP32)描述为量化方案,并在此基础上定义量化器,为神经网络中使用的其他量化方案的比较提供参考。数据的量化与拉普拉斯分布的考虑,在大范围的方差。将这些量化方案应用于神经网络权值的实验验证了理论结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Experimental Study on Relations between Non-ideal Surface Morphology with Corona Onset Voltage of Grading Ring Comparative Analysis of Planar Phased Arrays, Evenly Distributed and Uniformly Excited, with Square Aperture and Circular Aperture Influence of Viscosity on Radial Diffusion of Fluids in Paper Substrates Controlling Gain Enhancement Using a Reconfigurable Metasurface Layer Iterative Improvement Algorithm Used in Distribution Network Reconfiguration for Power Losses Minimization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1