Facial expressions: Discriminability of facial regions and relationship to biometrics recognition

Elisa Barroso, G. Santos, Hugo Proença
{"title":"Facial expressions: Discriminability of facial regions and relationship to biometrics recognition","authors":"Elisa Barroso, G. Santos, Hugo Proença","doi":"10.1109/CIBIM.2013.6607918","DOIUrl":null,"url":null,"abstract":"Facial expressions result from movements of muscular action units, in response to internal emotion states or perceptions, and it has been shown that they decrease the performance of face-based biometric recognition techniques. This paper focuses in the recognition of facial expressions and has the following purposes: 1) confirm the suitability of using dense image descriptors widely known in biometrics research (e.g., local binary patterns and histogram of oriented gradients) to recognize facial expressions; 2) compare the effectiveness attained when using different regions of the face to recognize expressions; 3) compare the effectiveness attained when the identity of subjects is known/unknown, before attempting to recognize their facial expressions.","PeriodicalId":286155,"journal":{"name":"2013 IEEE Symposium on Computational Intelligence in Biometrics and Identity Management (CIBIM)","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE Symposium on Computational Intelligence in Biometrics and Identity Management (CIBIM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIBIM.2013.6607918","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

Facial expressions result from movements of muscular action units, in response to internal emotion states or perceptions, and it has been shown that they decrease the performance of face-based biometric recognition techniques. This paper focuses in the recognition of facial expressions and has the following purposes: 1) confirm the suitability of using dense image descriptors widely known in biometrics research (e.g., local binary patterns and histogram of oriented gradients) to recognize facial expressions; 2) compare the effectiveness attained when using different regions of the face to recognize expressions; 3) compare the effectiveness attained when the identity of subjects is known/unknown, before attempting to recognize their facial expressions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
面部表情:面部区域的可分辨性及其与生物特征识别的关系
面部表情是由肌肉动作单位的运动产生的,是对内部情绪状态或感知的反应,并且已经证明它们会降低基于面部的生物识别技术的性能。本文的研究重点是面部表情的识别,其目的如下:1)验证生物识别研究中广泛使用的密集图像描述符(如局部二值模式和方向梯度直方图)在面部表情识别中的适用性;2)比较使用人脸不同区域识别表情的有效性;3)在试图识别受试者的面部表情之前,比较受试者身份已知/未知时获得的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Gait classification of twins and non-twins siblings Development of image enhancement algorithm for fingerprint images in TMS320C6416 DSK Face identity verification based on sinusoidal projection Periocular biometrics: An emerging technology for unconstrained scenarios Localized spatiotemporal modular ICA for face recognition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1