NAPEL

Gagandeep Singh, Juan Gómez-Luna, Giovanni Mariani, Geraldo F. Oliveira, Stefano Corda, S. Stuijk, Onur Mutlu, H. Corporaal
{"title":"NAPEL","authors":"Gagandeep Singh, Juan Gómez-Luna, Giovanni Mariani, Geraldo F. Oliveira, Stefano Corda, S. Stuijk, Onur Mutlu, H. Corporaal","doi":"10.1145/3316781.3317867","DOIUrl":null,"url":null,"abstract":"The cost of moving data between the memory/storage units and the compute units is a major contributor to the execution time and energy consumption of modern workloads in computing systems. A promising paradigm to alleviate this data movement bottleneck is near-memory computing (NMC), which consists of placing compute units close to the memory/storage units. There is substantial research effort that proposes NMC architectures and identifies work-loads that can benefit from NMC. System architects typically use simulation techniques to evaluate the performance and energy consumption of their designs. However, simulation is extremely slow, imposing long times for design space exploration. In order to enable fast early-stage design space exploration of NMC architectures, we need high-level performance and energy models.We present NAPEL, a high-level performance and energy estimation framework for NMC architectures. NAPEL leverages ensemble learning to develop a model that is based on micro architectural parameters and application characteristics. NAPEL training uses a statistical technique, called design of experiments, to collect representative training data efficiently. NAPEL provides early design space exploration 220× faster than a state-of-the-art NMC simulator, on average, with error rates of to 8.5% and 11.6% for performance and energy estimations, respectively, compared to the NMC simulator. NAPEL is also capable of making accurate predictions for previously-unseen applications.","PeriodicalId":391209,"journal":{"name":"Proceedings of the 56th Annual Design Automation Conference 2019","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"81","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 56th Annual Design Automation Conference 2019","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3316781.3317867","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 81

Abstract

The cost of moving data between the memory/storage units and the compute units is a major contributor to the execution time and energy consumption of modern workloads in computing systems. A promising paradigm to alleviate this data movement bottleneck is near-memory computing (NMC), which consists of placing compute units close to the memory/storage units. There is substantial research effort that proposes NMC architectures and identifies work-loads that can benefit from NMC. System architects typically use simulation techniques to evaluate the performance and energy consumption of their designs. However, simulation is extremely slow, imposing long times for design space exploration. In order to enable fast early-stage design space exploration of NMC architectures, we need high-level performance and energy models.We present NAPEL, a high-level performance and energy estimation framework for NMC architectures. NAPEL leverages ensemble learning to develop a model that is based on micro architectural parameters and application characteristics. NAPEL training uses a statistical technique, called design of experiments, to collect representative training data efficiently. NAPEL provides early design space exploration 220× faster than a state-of-the-art NMC simulator, on average, with error rates of to 8.5% and 11.6% for performance and energy estimations, respectively, compared to the NMC simulator. NAPEL is also capable of making accurate predictions for previously-unseen applications.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
LODESTAR DHOOM Filianore ChipSecure MRLoc
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1