L. O. Santos, P. G. Silva, Sharlene Silva Costa, T. B. Machado
{"title":"Magnetic Field Application to Increase Yield of Microalgal Biomass in Biofuel Production","authors":"L. O. Santos, P. G. Silva, Sharlene Silva Costa, T. B. Machado","doi":"10.5772/intechopen.94576","DOIUrl":null,"url":null,"abstract":"Use of fuels from non-renewable sources has currently been considered unsustainable due to the exhaustion of supplies and environmental impacts caused by them. Climate change has concerned and triggered environmental policies that favor research on clean and renewable energy sources. Thus, production of third generation biofuels is a promising path in the biofuel industry. To yield this type of biofuels, microalgae should be highlighted because this raw material contains important biomolecules, such as carbohydrates and lipids. Technological approaches have been developed to improve microalgal cultivation under ecological conditions, such as light intensity, temperature, pH and concentrations of micro and macronutrients. Thus, magnetic field application to microalgal cultivation has become a viable alternative to obtain high yields of biomass concentration and accumulation of carbohydrates and lipids.","PeriodicalId":221816,"journal":{"name":"Biotechnological Applications of Biomass","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnological Applications of Biomass","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5772/intechopen.94576","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Use of fuels from non-renewable sources has currently been considered unsustainable due to the exhaustion of supplies and environmental impacts caused by them. Climate change has concerned and triggered environmental policies that favor research on clean and renewable energy sources. Thus, production of third generation biofuels is a promising path in the biofuel industry. To yield this type of biofuels, microalgae should be highlighted because this raw material contains important biomolecules, such as carbohydrates and lipids. Technological approaches have been developed to improve microalgal cultivation under ecological conditions, such as light intensity, temperature, pH and concentrations of micro and macronutrients. Thus, magnetic field application to microalgal cultivation has become a viable alternative to obtain high yields of biomass concentration and accumulation of carbohydrates and lipids.