{"title":"Multi-resolution Localized Orthogonal Decomposition for Helmholtz problems","authors":"M. Hauck, D. Peterseim","doi":"10.1137/21m1414607","DOIUrl":null,"url":null,"abstract":"We introduce a novel multi-resolution Localized Orthogonal Decomposition (LOD) for time-harmonic acoustic scattering problems that can be modeled by the Helmholtz equation. The method merges the concepts of LOD and operator-adapted wavelets (gamblets) and proves its applicability for a class of complex-valued, non-hermitian and indefinite problems. It computes hierarchical bases that block-diagonalize the Helmholtz operator and thereby decouples the discretization scales. Sparsity is preserved by a novel localization strategy that improves stability properties even in the elliptic case. We present a rigorous stability and a-priori error analysis of the proposed method for homogeneous media. In addition, we investigate the fast solvability of the blocks by a standard iterative method. A sequence of numerical experiments illustrates the sharpness of the theoretical findings and demonstrates the applicability to scattering problems in heterogeneous media.","PeriodicalId":313703,"journal":{"name":"Multiscale Model. Simul.","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Multiscale Model. Simul.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/21m1414607","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14
Abstract
We introduce a novel multi-resolution Localized Orthogonal Decomposition (LOD) for time-harmonic acoustic scattering problems that can be modeled by the Helmholtz equation. The method merges the concepts of LOD and operator-adapted wavelets (gamblets) and proves its applicability for a class of complex-valued, non-hermitian and indefinite problems. It computes hierarchical bases that block-diagonalize the Helmholtz operator and thereby decouples the discretization scales. Sparsity is preserved by a novel localization strategy that improves stability properties even in the elliptic case. We present a rigorous stability and a-priori error analysis of the proposed method for homogeneous media. In addition, we investigate the fast solvability of the blocks by a standard iterative method. A sequence of numerical experiments illustrates the sharpness of the theoretical findings and demonstrates the applicability to scattering problems in heterogeneous media.