Improving image classification by orthogonality of sparse codes

Céline Rabouy, Sébastien Paris, H. Glotin
{"title":"Improving image classification by orthogonality of sparse codes","authors":"Céline Rabouy, Sébastien Paris, H. Glotin","doi":"10.1109/SOCPAR.2015.7492791","DOIUrl":null,"url":null,"abstract":"Sparse Coding (SC) is an approach widely used in image classification. It allows to reconstruct the signal with few elements and follows the specific scheme of Bag-of-Words (BoW). However, we can observe a decorrelation between input patches and reconstructed patches. To answer that, Graph regularized Sparse Coding (GSC) exists. As GSC works on the training set, we propose a new modeling, Joint Sparse Coding (JSC), for the testing set. JSC can be seen as a tradeoff between SC and GSC. To go furthermore, we explore the simple fusion of models. To explain the observations of the fusion results, we will be led to study the orthogonality properties by the cosine computation. These applied on UIUCsports, 17Flowers and scenes15 lead us to put forward the various qualities of the studied bases and sparse representation. We demonstrate a significant improvement of the State-of-the-Art for the UIUCsports database.","PeriodicalId":409493,"journal":{"name":"2015 7th International Conference of Soft Computing and Pattern Recognition (SoCPaR)","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 7th International Conference of Soft Computing and Pattern Recognition (SoCPaR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SOCPAR.2015.7492791","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Sparse Coding (SC) is an approach widely used in image classification. It allows to reconstruct the signal with few elements and follows the specific scheme of Bag-of-Words (BoW). However, we can observe a decorrelation between input patches and reconstructed patches. To answer that, Graph regularized Sparse Coding (GSC) exists. As GSC works on the training set, we propose a new modeling, Joint Sparse Coding (JSC), for the testing set. JSC can be seen as a tradeoff between SC and GSC. To go furthermore, we explore the simple fusion of models. To explain the observations of the fusion results, we will be led to study the orthogonality properties by the cosine computation. These applied on UIUCsports, 17Flowers and scenes15 lead us to put forward the various qualities of the studied bases and sparse representation. We demonstrate a significant improvement of the State-of-the-Art for the UIUCsports database.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用稀疏编码的正交性改进图像分类
稀疏编码(SC)是一种广泛应用于图像分类的方法。它允许用很少的元素重构信号,并遵循词袋(BoW)的具体方案。然而,我们可以观察到输入补丁和重建补丁之间的去相关。为了回答这个问题,存在图正则化稀疏编码(GSC)。由于GSC在训练集上工作,我们提出了一种新的测试集建模方法——联合稀疏编码(JSC)。JSC可以看作是SC和GSC之间的权衡。更进一步,我们探讨了模型的简单融合。为了解释聚变结果的观察结果,我们将通过余弦计算来研究正交性。这些在UIUCsports, 17Flowers和scenes15上的应用使我们提出了所研究基地的各种品质和稀疏表示。我们展示了uucsports数据库的最新技术的显著改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An effective AIS-based model for frequency assignment in mobile communication An innovative approach for feature selection based on chicken swarm optimization Vertical collaborative clustering using generative topographic maps Solving the obstacle neutralization problem using swarm intelligence algorithms Optimal partial filters of EEG signals for shared control of vehicle
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1