Lennart Bamberg, A. Ortiz, Lingjun Zhu, S. Pentapati, D. Shim, S. Lim
{"title":"Macro-3D: A Physical Design Methodology for Face-to-Face-Stacked Heterogeneous 3D ICs","authors":"Lennart Bamberg, A. Ortiz, Lingjun Zhu, S. Pentapati, D. Shim, S. Lim","doi":"10.23919/DATE48585.2020.9116297","DOIUrl":null,"url":null,"abstract":"Memory-on-logic and sensor-on-logic face-to-face stacking are emerging design approaches that promise a significant increase in the performance of modern systems-on-chip at reasonable costs. In this work, a netlist-to-layout design flow for such heterogeneous 3D systems is proposed. The proposed technique overcomes the severe limitations of existing 3D physical design methodologies. A RISC-V-based multi-core system, implemented in a commercial technology, is used as a case study to evaluate the proposed design flow. The case study is performed for modern/large and small cache sizes to show the superiority of the proposed methodology for a broad set of systems. While previous 3D design flows do not show to optimize performance against 2D baseline designs for processor systems with a significant memory area occupation, the proposed flow shows a performance and power improvement by 20.4–28.2% and 3.2–3.8%, respectively.","PeriodicalId":289525,"journal":{"name":"2020 Design, Automation & Test in Europe Conference & Exhibition (DATE)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 Design, Automation & Test in Europe Conference & Exhibition (DATE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/DATE48585.2020.9116297","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21
Abstract
Memory-on-logic and sensor-on-logic face-to-face stacking are emerging design approaches that promise a significant increase in the performance of modern systems-on-chip at reasonable costs. In this work, a netlist-to-layout design flow for such heterogeneous 3D systems is proposed. The proposed technique overcomes the severe limitations of existing 3D physical design methodologies. A RISC-V-based multi-core system, implemented in a commercial technology, is used as a case study to evaluate the proposed design flow. The case study is performed for modern/large and small cache sizes to show the superiority of the proposed methodology for a broad set of systems. While previous 3D design flows do not show to optimize performance against 2D baseline designs for processor systems with a significant memory area occupation, the proposed flow shows a performance and power improvement by 20.4–28.2% and 3.2–3.8%, respectively.