A Framework Dealing with Uncertainty for Complex Event Recognition

R. Romdhane, F. Brémond, M. Thonnat
{"title":"A Framework Dealing with Uncertainty for Complex Event Recognition","authors":"R. Romdhane, F. Brémond, M. Thonnat","doi":"10.1109/AVSS.2010.39","DOIUrl":null,"url":null,"abstract":"This paper presents a constraint-based approach forvideo event recognition with probabilistic reasoning forhandling uncertainty. The main advantage of constraintbasedapproaches is the possibility for human expert tomodel composite events with complex temporal constraints.But the approaches are usually deterministic and do notenable the convenient mechanism of probability reasoningto handle the uncertainty. The first advantage of the proposedapproach is the ability to model and recognize compositeevents with complex temporal constraints. The secondadvantage is that probability theory provides a consistentframework for dealing with uncertain knowledge for arobust and reliable recognition of complex event. This approachis evaluated with 4 real healthcare videos and a publicvideo ETISEO’06. The results are compared with stateof the art method. The comparison shows that the proposedapproach improves significantly the process of recognitionand characterizes the likelihood of the recognized events.","PeriodicalId":415758,"journal":{"name":"2010 7th IEEE International Conference on Advanced Video and Signal Based Surveillance","volume":"83 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 7th IEEE International Conference on Advanced Video and Signal Based Surveillance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AVSS.2010.39","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

This paper presents a constraint-based approach forvideo event recognition with probabilistic reasoning forhandling uncertainty. The main advantage of constraintbasedapproaches is the possibility for human expert tomodel composite events with complex temporal constraints.But the approaches are usually deterministic and do notenable the convenient mechanism of probability reasoningto handle the uncertainty. The first advantage of the proposedapproach is the ability to model and recognize compositeevents with complex temporal constraints. The secondadvantage is that probability theory provides a consistentframework for dealing with uncertain knowledge for arobust and reliable recognition of complex event. This approachis evaluated with 4 real healthcare videos and a publicvideo ETISEO’06. The results are compared with stateof the art method. The comparison shows that the proposedapproach improves significantly the process of recognitionand characterizes the likelihood of the recognized events.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
复杂事件识别中的不确定性处理框架
本文提出了一种基于约束的视频事件识别方法,并利用概率推理处理不确定性。基于约束的方法的主要优点是人类专家可以对具有复杂时间约束的复合事件进行建模。但是,这些方法通常是确定性的,没有方便的概率推理机制来处理不确定性。该方法的第一个优点是能够对具有复杂时间约束的组合事件进行建模和识别。第二个优点是概率论为处理不确定性知识提供了一个一致的框架,从而实现对复杂事件的可靠识别。该方法通过4个真实的医疗保健视频和一个公开视频ETISEO ' 06进行了评估。结果与最先进的方法进行了比较。比较表明,该方法显著改善了识别过程,并表征了识别事件的可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Statistical Background Modeling: An Edge Segment Based Moving Object Detection Approach Who, what, when, where, why and how in video analysis: an application centric view Trajectory Based Activity Discovery Local Abnormality Detection in Video Using Subspace Learning Functionality Delegation in Distributed Surveillance Systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1