Design of a linear model predictive controller for an overactuated triangular floating platform

Aristomenis Tsopelakos, K. Vlachos, E. Papadopoulos
{"title":"Design of a linear model predictive controller for an overactuated triangular floating platform","authors":"Aristomenis Tsopelakos, K. Vlachos, E. Papadopoulos","doi":"10.1109/CCA.2014.6981449","DOIUrl":null,"url":null,"abstract":"In this paper the design of a linear model predictive controller for a triangular floating platform is presented aiming at the stabilization of its linear and angular velocities as well as its position and orientation. Three rotating jets, located at the corners of the platform, control its motion. With this control configuration, the platform is over-actuated. The prediction, and optimization phase of the linear model predictive controller are presented in detail. Simulation results, in the presence of realistic environmental disturbances, are given that demonstrate the performance and robustness of the controller. The proposed controller is compared with a modelbased controller that was developed for the same platform in a prior work, and the superiority of the former concerning the dynamic positioning capabilities, and the power consumption is shown.","PeriodicalId":205599,"journal":{"name":"2014 IEEE Conference on Control Applications (CCA)","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Conference on Control Applications (CCA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCA.2014.6981449","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

In this paper the design of a linear model predictive controller for a triangular floating platform is presented aiming at the stabilization of its linear and angular velocities as well as its position and orientation. Three rotating jets, located at the corners of the platform, control its motion. With this control configuration, the platform is over-actuated. The prediction, and optimization phase of the linear model predictive controller are presented in detail. Simulation results, in the presence of realistic environmental disturbances, are given that demonstrate the performance and robustness of the controller. The proposed controller is compared with a modelbased controller that was developed for the same platform in a prior work, and the superiority of the former concerning the dynamic positioning capabilities, and the power consumption is shown.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
过驱动三角形浮动平台线性模型预测控制器设计
本文针对三角形浮动平台的线速度、角速度以及位置和姿态的稳定问题,设计了一种线性模型预测控制器。三个旋转的喷嘴,位于平台的角落,控制其运动。在这种控制配置下,平台被过度驱动。详细介绍了线性模型预测控制器的预测和优化阶段。仿真结果表明,在实际环境干扰下,该控制器具有良好的鲁棒性。将所提出的控制器与前人针对同一平台开发的基于模型的控制器进行了比较,表明了前者在动态定位能力和功耗方面的优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Modelling and model predictive control of oil wells with Electric Submersible Pumps Adaptive control of permanent magnet synchronous motor with constrained reference current exploiting backstepping methodology Multi-robot mixing of nonholonomic mobile robots Predictive control system design with adaptive output estimator for non-uniformly sampled multi-rate systems and its application to liquid level control Design and application of a data-driven PID controller
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1