Determinants of Multidrug-Resistant Pulmonary Tuberculosis in Indonesia: A Spatial Analysis Perspective

N. Andini, S. I. Oktora
{"title":"Determinants of Multidrug-Resistant Pulmonary Tuberculosis in Indonesia: A Spatial Analysis Perspective","authors":"N. Andini, S. I. Oktora","doi":"10.30812/varian.v6i1.1973","DOIUrl":null,"url":null,"abstract":"Tuberculosis is caused by Mycobacterium Tuberculosis (MT). MT usually attacks the lungs and causes pulmonary-tuberculosis. Tuberculosis cases in Indonesia keep increasing over the years. The presence of Multidrug-Resistant Tuberculosis (MDR-TB) has been one of the main obstacles in eradicating tuberculosis because it couldn’t be cured using standard drugs. In fact, the success rate of MDR-TB treatment in 2019 at the global level was only 57 percent. Research on MDR-TB can be related to the spatial aspect because this disease can be transmitted quickly. This study aims to obtain an overview and model the number of Indonesia’s pulmonary MDR-TB cases in 2019 using the Geographically Weighted Negative Binomial Regression (GWNBR) method. The independent variables used in the model are population density, percentage of poor population, health center ratio per 100 thousand population, the ratio of health workers per 10 thousand population, percentage of smokers, percentage of the region with PHBS policies, and percentage of BCG immunization coverage. The finding reveals that the model forms 12 regional groups based on significant variables where GWNBR gives better results compared to NBR. The significant spatial correlation implies that the collaboration among regional governments plays an important role in reducing the number of pulmonary MDR-TB.","PeriodicalId":188119,"journal":{"name":"Jurnal Varian","volume":"60 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Varian","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30812/varian.v6i1.1973","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Tuberculosis is caused by Mycobacterium Tuberculosis (MT). MT usually attacks the lungs and causes pulmonary-tuberculosis. Tuberculosis cases in Indonesia keep increasing over the years. The presence of Multidrug-Resistant Tuberculosis (MDR-TB) has been one of the main obstacles in eradicating tuberculosis because it couldn’t be cured using standard drugs. In fact, the success rate of MDR-TB treatment in 2019 at the global level was only 57 percent. Research on MDR-TB can be related to the spatial aspect because this disease can be transmitted quickly. This study aims to obtain an overview and model the number of Indonesia’s pulmonary MDR-TB cases in 2019 using the Geographically Weighted Negative Binomial Regression (GWNBR) method. The independent variables used in the model are population density, percentage of poor population, health center ratio per 100 thousand population, the ratio of health workers per 10 thousand population, percentage of smokers, percentage of the region with PHBS policies, and percentage of BCG immunization coverage. The finding reveals that the model forms 12 regional groups based on significant variables where GWNBR gives better results compared to NBR. The significant spatial correlation implies that the collaboration among regional governments plays an important role in reducing the number of pulmonary MDR-TB.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
印度尼西亚耐多药肺结核的决定因素:空间分析视角
结核病是由结核分枝杆菌(MT)引起的。结核分枝杆菌通常侵袭肺部并引起肺结核。多年来,印度尼西亚的结核病病例不断增加。耐多药结核病(MDR-TB)的存在一直是根除结核病的主要障碍之一,因为它不能用标准药物治愈。事实上,2019年全球耐多药结核病治疗成功率仅为57%。耐多药结核病的研究可以从空间方面进行,因为这种疾病可以迅速传播。本研究旨在利用地理加权负二项回归(GWNBR)方法对2019年印度尼西亚肺部耐多药结核病病例数量进行概述和建模。模型中使用的自变量是人口密度、贫困人口百分比、每10万人口的保健中心比例、每1万人口的保健工作者比例、吸烟者百分比、实行PHBS政策的地区百分比和卡介苗免疫覆盖率百分比。研究结果表明,该模型基于重要变量形成了12个区域组,其中GWNBR比NBR给出了更好的结果。显著的空间相关性表明,区域政府间的合作在减少肺部耐多药结核病数量方面发挥着重要作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Application of Principal Component Regression in Analyzing Factors Affecting Human Development Index Impact of SST Anomalies on Coral Reefs Damage Based on Copula Analysis The NADI Mathematical Model on the Danger Level of the Bili-Bili Dam Regression Model of Land Area and Amount of Production to the Selling Price of Corn K-Means – Resilient Backpropagation Neural Network in Predicting Poverty Levels
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1