Fractional-Order Sliding-Mode Fault-Tolerant Neural Adaptive Control of Fixed-Wing UAV With Prescribed Tracking Performance

Ziquan Yu, H. Badihi, Youmin Zhang, Yajie Ma, B. Jiang, C. Su
{"title":"Fractional-Order Sliding-Mode Fault-Tolerant Neural Adaptive Control of Fixed-Wing UAV With Prescribed Tracking Performance","authors":"Ziquan Yu, H. Badihi, Youmin Zhang, Yajie Ma, B. Jiang, C. Su","doi":"10.1109/IAI50351.2020.9262225","DOIUrl":null,"url":null,"abstract":"In this paper, a fractional-order sliding-mode fault-tolerant tracking control scheme is proposed for a fixed-wing UAV with prescribed performance. The outer-loop position dynamics is first transformed to the second-order nonlinear model. By using neural networks, the unknown nonlinear functions containing actuator faults are identified. Moreover, the minimum learning parameter of neural networks is constructed to reduce the computational burden. Fractional-order calculus is further utilized in the sliding-mode control for improving the fault-tolerant tracking performance. Simulation results are presented to show the effectiveness.","PeriodicalId":137183,"journal":{"name":"2020 2nd International Conference on Industrial Artificial Intelligence (IAI)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 2nd International Conference on Industrial Artificial Intelligence (IAI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IAI50351.2020.9262225","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

In this paper, a fractional-order sliding-mode fault-tolerant tracking control scheme is proposed for a fixed-wing UAV with prescribed performance. The outer-loop position dynamics is first transformed to the second-order nonlinear model. By using neural networks, the unknown nonlinear functions containing actuator faults are identified. Moreover, the minimum learning parameter of neural networks is constructed to reduce the computational burden. Fractional-order calculus is further utilized in the sliding-mode control for improving the fault-tolerant tracking performance. Simulation results are presented to show the effectiveness.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
给定跟踪性能的固定翼无人机分数阶滑模容错神经自适应控制
针对某型固定翼无人机,提出了一种分数阶滑模容错跟踪控制方案。首先将外环位置动力学转化为二阶非线性模型。利用神经网络对包含执行器故障的未知非线性函数进行识别。此外,还构造了神经网络的最小学习参数,以减少计算量。在滑模控制中进一步利用分数阶演算来提高系统的容错跟踪性能。仿真结果表明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Phasmatodea population evolution algorithm and its application in length-changeable incremental extreme learning machine An Intelligent Fault Classification Method Based on Data-Driven Stability Margin Real-time Wind Estimation with a Quadrotor using BP Neural Network Hybrid Neural Network Based on GRU with Uncertain Factors for Forecasting Ultra-short-term Wind Power Research on the mechanism and network model of China's public cultural service in the Internet Era
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1