Maintaining Multiple Populations with Different Diversities for Evolutionary Optimization Based on Probability Models

Takayuki Higo, K. Takadama
{"title":"Maintaining Multiple Populations with Different Diversities for Evolutionary Optimization Based on Probability Models","authors":"Takayuki Higo, K. Takadama","doi":"10.2197/IPSJDC.4.268","DOIUrl":null,"url":null,"abstract":"This paper proposes a novel method, Hierarchical Importance Sampling (HIS) that can be used instead of population convergence in evolutionary optimization based on probability models (EOPM)such as estimation of distribution algorithms and cross entropy methods. In HIS, multiple populations are maintained simultaneously such that they have different diversities, and the probability model of one population is built through importance sampling by mixing with the other populations. This mechanism can allow populations to escape from local optima. Experimental comparisons reveal that HIS outperforms general EOPM.","PeriodicalId":432390,"journal":{"name":"Ipsj Digital Courier","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ipsj Digital Courier","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2197/IPSJDC.4.268","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

This paper proposes a novel method, Hierarchical Importance Sampling (HIS) that can be used instead of population convergence in evolutionary optimization based on probability models (EOPM)such as estimation of distribution algorithms and cross entropy methods. In HIS, multiple populations are maintained simultaneously such that they have different diversities, and the probability model of one population is built through importance sampling by mixing with the other populations. This mechanism can allow populations to escape from local optima. Experimental comparisons reveal that HIS outperforms general EOPM.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于概率模型的多种群多样性维持进化优化
本文提出了一种新的基于概率模型(EOPM)的进化优化算法,如分布估计算法和交叉熵方法,可以用来代替种群收敛。在HIS中,同时维持多个种群,使其具有不同的多样性,并通过与其他种群混合进行重要抽样,建立一个种群的概率模型。这种机制可以使种群脱离局部最优状态。实验比较表明,HIS优于一般EOPM。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Distributed-Processing System for Accelerating Biological Research Using Data-Staging A Type System for Dynamic Delimited Continuations A Combination Method of the Tanimoto Coefficient and Proximity Measure of Random Forest for Compound Activity Prediction Peer-to-Peer Multimedia Streaming with Guaranteed QoS for Future Real-time Applications A Benchmark Tool for Network I/O Management Architectures
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1