Accelerating Data-Parallel Neural Network Training with Weighted-Averaging Reparameterisation

Sterling Ramroach, A. Joshi
{"title":"Accelerating Data-Parallel Neural Network Training with Weighted-Averaging Reparameterisation","authors":"Sterling Ramroach, A. Joshi","doi":"10.1142/S0129626421500092","DOIUrl":null,"url":null,"abstract":"Recent advances in artificial intelligence has shown a direct correlation between the performance of a network and the number of hidden layers within the network. The Compute Unified Device Architecture (CUDA) framework facilitates the movement of heavy computation from the CPU to the graphics processing unit (GPU) and is used to accelerate the training of neural networks. In this paper, we consider the problem of data-parallel neural network training. We compare the performance of training the same neural network on the GPU with and without data parallelism. When data parallelism is used, we compare with both the conventional averaging of coefficients and our proposed method. We set out to show that not all sub-networks are equal and thus, should not be treated as equals when normalising weight vectors. The proposed method achieved state of the art accuracy faster than conventional training along with better classification performance in some cases.","PeriodicalId":422436,"journal":{"name":"Parallel Process. Lett.","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Parallel Process. Lett.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/S0129626421500092","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Recent advances in artificial intelligence has shown a direct correlation between the performance of a network and the number of hidden layers within the network. The Compute Unified Device Architecture (CUDA) framework facilitates the movement of heavy computation from the CPU to the graphics processing unit (GPU) and is used to accelerate the training of neural networks. In this paper, we consider the problem of data-parallel neural network training. We compare the performance of training the same neural network on the GPU with and without data parallelism. When data parallelism is used, we compare with both the conventional averaging of coefficients and our proposed method. We set out to show that not all sub-networks are equal and thus, should not be treated as equals when normalising weight vectors. The proposed method achieved state of the art accuracy faster than conventional training along with better classification performance in some cases.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
加权平均重参数化加速数据并行神经网络训练
人工智能的最新进展表明,网络的性能与网络中隐藏层的数量之间存在直接关联。CUDA (Compute Unified Device Architecture)框架有助于将繁重的计算从CPU转移到图形处理单元(GPU),并用于加速神经网络的训练。本文研究了数据并行神经网络的训练问题。我们比较了在有数据并行性和没有数据并行性的情况下在GPU上训练同一神经网络的性能。当使用数据并行性时,我们与传统的系数平均方法和我们提出的方法进行了比较。我们开始表明并不是所有的子网络都是相等的,因此,在规范化权向量时不应该被视为相等的。在某些情况下,该方法比传统训练更快地达到了最先进的精度,并且具有更好的分类性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Note to Non-adaptive Broadcasting Semi-Supervised Node Classification via Semi-Global Graph Transformer Based on Homogeneity Augmentation 4-Free Strong Digraphs with the Maximum Size Relation-aware Graph Contrastive Learning The Normalized Laplacian Spectrum of Folded Hypercube with Applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1