Automatic Improvement of Machine Translation Using Mutamorphic Relation: Invited Talk Paper

Jie M. Zhang
{"title":"Automatic Improvement of Machine Translation Using Mutamorphic Relation: Invited Talk Paper","authors":"Jie M. Zhang","doi":"10.1145/3387940.3391541","DOIUrl":null,"url":null,"abstract":"This paper introduces Mutamorphic Relation for Machine Learning Testing. Mutamorphic Relation combines data mutation and metamorphic relations as test oracles for machine learning systems. These oracles can help achieve fully automatic testing as well as automatic repair of the machine learning models. The paper takes TransRepair as an example to show the effectiveness of Mutamorphic Relation in automatically testing and improving machine translators, TransRepair detects inconsistency bugs without access to human oracles. It then adopts probability-reference or cross-reference to post-process the translations, in a grey-box or black-box manner, to repair the inconsistencies. Manual inspection indicates that the translations repaired by TransRepair improve consistency in 87% of cases (degrading it in 2%), and that the repairs of have better translation acceptability in 27% of the cases (worse in 8%).","PeriodicalId":309659,"journal":{"name":"Proceedings of the IEEE/ACM 42nd International Conference on Software Engineering Workshops","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the IEEE/ACM 42nd International Conference on Software Engineering Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3387940.3391541","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper introduces Mutamorphic Relation for Machine Learning Testing. Mutamorphic Relation combines data mutation and metamorphic relations as test oracles for machine learning systems. These oracles can help achieve fully automatic testing as well as automatic repair of the machine learning models. The paper takes TransRepair as an example to show the effectiveness of Mutamorphic Relation in automatically testing and improving machine translators, TransRepair detects inconsistency bugs without access to human oracles. It then adopts probability-reference or cross-reference to post-process the translations, in a grey-box or black-box manner, to repair the inconsistencies. Manual inspection indicates that the translations repaired by TransRepair improve consistency in 87% of cases (degrading it in 2%), and that the repairs of have better translation acceptability in 27% of the cases (worse in 8%).
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用变形关系自动改进机器翻译:特邀报告
介绍了机器学习测试中的变形关系。Mutamorphic Relation结合了数据突变和变形关系作为机器学习系统的测试预言。这些预言机可以帮助实现全自动测试以及机器学习模型的自动修复。本文以TransRepair为例,说明了变形关系在自动测试和改进机器翻译中的有效性,TransRepair可以在不需要人工指令的情况下检测不一致的错误。然后采用概率参考或交叉参考对翻译进行后处理,以灰盒或黑盒的方式修复不一致性。人工检查表明,通过TransRepair修复的译文在87%的情况下提高了一致性(2%的情况下降低了一致性),并且修复的译文在27%的情况下具有更好的翻译可接受性(8%的情况更差)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Preliminary Systematic Mapping on Software Engineering for Robotic Systems: A Software Quality Perspective Generating API Test Data Using Deep Reinforcement Learning Human Factors in the Study of Automatic Software Repair: Future Directions for Research with Industry Strategies for Crowdworkers to Overcome Barriers in Competition-based Software Crowdsourcing Development Centralized Generic Interfaces in Hardware/Software Co-design for AI Accelerators
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1