Integrated Optimization of Train Formation Plan and Rolling Stock Scheduling with Multiple Turnaround Operations Under Uneven Demand in an Urban Rail Transit Line

Yaqiong Zhao, D. Li, Yonghao Yin, Xinlei Dong, Songliang Zhang
{"title":"Integrated Optimization of Train Formation Plan and Rolling Stock Scheduling with Multiple Turnaround Operations Under Uneven Demand in an Urban Rail Transit Line","authors":"Yaqiong Zhao, D. Li, Yonghao Yin, Xinlei Dong, Songliang Zhang","doi":"10.1109/ITSC45102.2020.9294586","DOIUrl":null,"url":null,"abstract":"The passenger demand of urban rail transit is dynamic and uneven in time and space, and traditional train plan of single train formation cannot adapt to dynamic passenger demand. In order to solve the redundancy of train capacity caused by uneven passenger demand in bi-directions, we proposed a mixed-integer linear programing model (MILP) to optimize the train formation plan and rolling stock scheduling integrally based on known passenger demand and timetable for an urban rail transit line. The turnaround operation, coupling/decoupling operation, the entering/exiting depot operation of train services, the number of available trains and the capacity of depot are involved. The model is solved by the CPLEX solver. As illustration, the model is applied to Beijing Batong line to verify its effectiveness and performance. The results show that through this integrated approach the number of operation formations can reduce 44% and the number of rolling stocks can reduce 20%. It demonstrated that the proposed model can effectively reduce the operation cost while satisfy the uneven demand.","PeriodicalId":394538,"journal":{"name":"2020 IEEE 23rd International Conference on Intelligent Transportation Systems (ITSC)","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 23rd International Conference on Intelligent Transportation Systems (ITSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITSC45102.2020.9294586","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The passenger demand of urban rail transit is dynamic and uneven in time and space, and traditional train plan of single train formation cannot adapt to dynamic passenger demand. In order to solve the redundancy of train capacity caused by uneven passenger demand in bi-directions, we proposed a mixed-integer linear programing model (MILP) to optimize the train formation plan and rolling stock scheduling integrally based on known passenger demand and timetable for an urban rail transit line. The turnaround operation, coupling/decoupling operation, the entering/exiting depot operation of train services, the number of available trains and the capacity of depot are involved. The model is solved by the CPLEX solver. As illustration, the model is applied to Beijing Batong line to verify its effectiveness and performance. The results show that through this integrated approach the number of operation formations can reduce 44% and the number of rolling stocks can reduce 20%. It demonstrated that the proposed model can effectively reduce the operation cost while satisfy the uneven demand.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
需求不均衡条件下城市轨道交通多班次编组计划与车辆调度的综合优化
城市轨道交通客运需求在时空上具有动态性和不均匀性,传统的单列发车方案已不能适应客运需求的动态性。为了解决双向客运需求不均衡导致的列车运力冗余问题,提出了一种基于已知客运需求和时刻表的混合整数线性规划模型(MILP),对城市轨道交通线路的编组计划和车辆调度进行综合优化。涉及到周转操作、耦合/解耦操作、列车服务进出车场操作、可用列车数量和车场容量。采用CPLEX求解器对模型进行求解。以北京八通线为例,验证了该模型的有效性和性能。结果表明,采用该综合方法可减少44%的作业队数和20%的车辆数量。结果表明,该模型在满足不均衡需求的同时,能有效降低运行成本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
CR-TMS: Connected Vehicles enabled Road Traffic Congestion Mitigation System using Virtual Road Capacity Inflation A novel concept for validation of pre-crash perception sensor information using contact sensor Space-time Map based Path Planning Scheme in Large-scale Intelligent Warehouse System Weakly-supervised Road Condition Classification Using Automatically Generated Labels Studying the Impact of Public Transport on Disaster Evacuation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1