DCNet: diffusion convolutional networks for semantic image segmentation

Lan Yang, Zhixiong Jiang, Hongbo Zhou, Jun Guo
{"title":"DCNet: diffusion convolutional networks for semantic image segmentation","authors":"Lan Yang, Zhixiong Jiang, Hongbo Zhou, Jun Guo","doi":"10.1504/IJES.2021.116135","DOIUrl":null,"url":null,"abstract":"Semantic image segmentation makes a pixel-level classification play an essential role in scene understanding. Recently, most approaches exploit deep learning neural networks, especially convolutional neural networks (CNNs), to tackle the image segmentation challenge. Common issues of these CNN-based methods are the loss of spatial features during learning representations and the limited capacity for capturing contextual information in a large receptive field. This paper proposes a diffusion convolutional network (DCNet) to combine the CNN and graph convolutional neural network (GCNN) for semantic image segmentation. In the proposed model, diffusion convolution is formulated as a graph convolutional layer to aggregate structural and contextual information without losing spatial features. The final segmentation results on the PASCAL VOC 2012 and Cityscapes datasets show better performance than baseline approaches and can be competitive with state-of-the-art methods.","PeriodicalId":412308,"journal":{"name":"Int. J. Embed. Syst.","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Embed. Syst.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJES.2021.116135","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Semantic image segmentation makes a pixel-level classification play an essential role in scene understanding. Recently, most approaches exploit deep learning neural networks, especially convolutional neural networks (CNNs), to tackle the image segmentation challenge. Common issues of these CNN-based methods are the loss of spatial features during learning representations and the limited capacity for capturing contextual information in a large receptive field. This paper proposes a diffusion convolutional network (DCNet) to combine the CNN and graph convolutional neural network (GCNN) for semantic image segmentation. In the proposed model, diffusion convolution is formulated as a graph convolutional layer to aggregate structural and contextual information without losing spatial features. The final segmentation results on the PASCAL VOC 2012 and Cityscapes datasets show better performance than baseline approaches and can be competitive with state-of-the-art methods.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于语义图像分割的扩散卷积网络
语义图像分割使得像素级分类在场景理解中起着至关重要的作用。目前,大多数方法利用深度学习神经网络,特别是卷积神经网络(cnn)来解决图像分割问题。这些基于cnn的方法的共同问题是在学习表征过程中空间特征的丢失以及在大的接受域中捕获上下文信息的能力有限。本文提出了一种将CNN和图卷积神经网络(GCNN)结合起来进行语义图像分割的扩散卷积网络(DCNet)。在提出的模型中,扩散卷积被表述为一个图卷积层,在不丢失空间特征的情况下聚合结构和上下文信息。在PASCAL VOC 2012和cityscape数据集上的最终分割结果显示出比基线方法更好的性能,可以与最先进的方法竞争。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
NITIDS: a robust network intrusion dataset Solution to the conformable fractional differential systems with higher order Flexible heuristic-based prioritised latency-sensitive IoT application execution scheme in the 5G era Selection gate-based networks for semantic relation extraction A combination classification method based on Ripper and Adaboost
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1