Longitudinal Modeling of a Road Vehicle: 4-Wheel Traction

Calequela J. T. Manuel, Max M. D. Santos, G. Lenzi, Â. Tusset
{"title":"Longitudinal Modeling of a Road Vehicle: 4-Wheel Traction","authors":"Calequela J. T. Manuel, Max M. D. Santos, G. Lenzi, Â. Tusset","doi":"10.31763/ijrcs.v2i2.698","DOIUrl":null,"url":null,"abstract":"This paper presents the longitudinal modeling of a 4-wheel traction vehicle represented in a block diagram using Matlab®/Simulink® software. The proposed modeling is suitable to be implemented in automatic parallel, oblique, or perpendicular parking systems considering speed cases between 5 km/h and 30 km/h. For the computational simulations, it was considered that the vehicle starts at rest and goes up a referenced or determined slope in degrees (°), with a sufficient rear reaction force to allow the vehicle to move until the engine produces sufficient torque. For the model of the tire variant, the magic formula (characterized by the sum of five vectors about an axis) was used. Three input signals were considered, slope, wind, and accelerator variation were considered in numerical simulations. The output signals are rear and normal front forces, vehicle speed, angular velocity, and engine acceleration. The longitudinal modeling proposed allows for easily reproducing the results and assigning new parameters to validate a Project, contributing positively both to the automotive industries and in innovation-based scientific research.","PeriodicalId":409364,"journal":{"name":"International Journal of Robotics and Control Systems","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Robotics and Control Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31763/ijrcs.v2i2.698","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents the longitudinal modeling of a 4-wheel traction vehicle represented in a block diagram using Matlab®/Simulink® software. The proposed modeling is suitable to be implemented in automatic parallel, oblique, or perpendicular parking systems considering speed cases between 5 km/h and 30 km/h. For the computational simulations, it was considered that the vehicle starts at rest and goes up a referenced or determined slope in degrees (°), with a sufficient rear reaction force to allow the vehicle to move until the engine produces sufficient torque. For the model of the tire variant, the magic formula (characterized by the sum of five vectors about an axis) was used. Three input signals were considered, slope, wind, and accelerator variation were considered in numerical simulations. The output signals are rear and normal front forces, vehicle speed, angular velocity, and engine acceleration. The longitudinal modeling proposed allows for easily reproducing the results and assigning new parameters to validate a Project, contributing positively both to the automotive industries and in innovation-based scientific research.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
公路车辆纵向建模:四轮牵引
本文利用Matlab®/Simulink®软件对四轮牵引车辆进行了方框图的纵向建模。所提出的模型适用于考虑5 km/h至30 km/h速度的自动平行、倾斜或垂直停车系统。在计算模拟中,考虑车辆在静止状态下启动,然后沿着参考或确定的斜度(°)向上行驶,并具有足够的后反作用力以允许车辆移动,直到发动机产生足够的扭矩。对于轮胎变体的模型,使用了神奇公式(以围绕一个轴的五个向量的和为特征)。在数值模拟中考虑了三种输入信号,坡度、风和加速器的变化。输出信号是后方和正常的前方力量,车辆速度,角速度和发动机加速度。所提出的纵向建模允许轻松地再现结果并分配新参数来验证项目,为汽车行业和基于创新的科学研究做出积极贡献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.10
自引率
0.00%
发文量
0
期刊最新文献
Performance Enhancement of a Variable Speed Permanent Magnet Synchronous Generator Used for Renewable Energy Application Comparison of Feature Extraction with PCA and LTP Methods and Investigating the Effect of Dimensionality Reduction in the Bat Algorithm for Face Recognition Power Quality Improvement using a New DPC Switching Table for a Three-Phase SAPF Integrated Modelling and Control of Linear Actuator Based Automatic Pedal Pressing Mechanism for Low-Speed Driving in a Road Traffic Delay Fish Swarmed Kalman Filter for State Observer Feedback of Two-Wheeled Mobile Robot Stabilization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1